Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Insufficient ionic conductivity, limited Li transfer number (t+), and narrow electrochemical windows have heavily restricted the actual application of PEO (poly(ethylene) oxide)-based polymer electrolytes (PEs). Herein, a novel deep eutectic solvent (DES)-based PEO PE for stabilizing high voltage lithium metal battery (LMB) is designed. The DES reduces the crystallinity of PEO while promoting the dissociation of LiTFSI to release more free Li, thus facilitating the transport of Li in the PEO matrix. In addition, the interaction between DES and the PEO, thereby improving the stability of the PEO-based PE under high voltage. Consequently, the PEO-DES-FEC (for short PDF) PE possesses satisfactory ionic conductivity, good mechanical properties, and high electrochemical stability. Meanwhile, PDF PE can build a robust/uniform LiF-rich solid electrolyte interface (SEI) to ensure electrode/electrolyte interface stability. As a concept proof, the Li symmetrical battery and Li||LiFePO LMBs of PDF PE exhibit good cycle stability. Applied to the high voltage Li||NCM811 LMBs, the PDF PE-based cell has excellent cycling performance at 4.3 and 4.5 V. This tactic is one of the successful demonstrations of PEO-based electrolytes under 4.5 V high voltage conditions, which breaks through the voltage constraint of conventional PEO-based PEs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202408944 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!