The imperative advance towards achieving "carbon neutrality" necessitates the development of porous structures possessing dual acoustic and mechanical properties in order to mitigate energy consumption. Nevertheless, enhancing various functionalities often leads to an increase in the structural weight, which limits the feasibility of using such structures in weight-sensitive applications. In accordance with the outlined specifications, a novel structural design incorporating carbon fiber reinforced polymer (CFRP) composites alongside mechanical and acoustic metamaterials has been introduced for the first time. This innovative construction exhibits a lightweight composition with excellent mechanical and acoustic characteristics. Experimental findings demonstrate that with meticulous planning and fabrication, CFRP composite structures can achieve a balance of lightweight construction, high strength, exceptional energy absorption, and remarkable resilience. By introducing membrane and reasonable cavity design, the structure can produce low broadband noise reduction performance by a local resonance effect and impedance matching mechanism of metamaterials. The structural sound insulation capability breaks traditional mass law, resulting in an exceptionally broadband sound insulation peak (bandwidth of nearly 1000 Hz). Furthermore, the sound absorption characteristic of the structure surpasses that of the melamine sponge at frequencies below 300 Hz, demonstrating superior low-frequency sound absorption properties. The proposed structure provides new approaches for the design of multifunctional lightweight superstructures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01173bDOI Listing

Publication Analysis

Top Keywords

acoustic mechanical
8
cfrp composites
8
mechanical acoustic
8
sound insulation
8
sound absorption
8
multifunctional acoustic
4
mechanical
4
mechanical metamaterials
4
metamaterials prepared
4
prepared continuous
4

Similar Publications

To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.

View Article and Find Full Text PDF

Investigation of factors affecting the sound absorption behaviour of 3D printed hexagonal prism lattice polyamide structures.

Sci Rep

December 2024

Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.

The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.

View Article and Find Full Text PDF

A signal energy approach of acoustic source localization in plate structures using a discrete sensor array.

Ultrasonics

December 2024

Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, AZ 85721, USA; Aerospace and Mechanical Engineering Department, Materials Science and Engineering Department, University of Arizona, Tucson, AZ 85721, USA.

In the field of engineering structural health monitoring, acoustic source localization (ASL) is a common method to monitor early damage. Most of the existing ASL techniques have high requirements for accurate acquisition of time of arrival, and require complex iterative algorithms or signal processing techniques, which are not conducive to real-time monitoring. In this paper, a signal energy approach of acoustic source localization in plate structures using a discrete sensor array is proposed.

View Article and Find Full Text PDF

Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation.

View Article and Find Full Text PDF

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!