Size-Resolved SERS Detection of Trace Polystyrene Nanoplastics via Selective Electrosorption.

Anal Chem

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Published: December 2024

Microplastics and nanoplastics are emerging contaminants that pose a threat to the environment and human. Spectroscopic technologies are advantageous in analyzing nanoplastics, but it is challenging to selectively detect nanoplastics with different size thresholds. In this work, the hyphenated method of electrosorption and surface-enhanced Raman spectroscopy (ES-SERS) was developed for the simple, rapid, and size-resolved analysis of trace polystyrene (PS) nanoplastics from 20 to 300 nm. A rough silver was used as both the working electrode for electrosorption and the substrate for the SERS response. By applying a positive electric potential to the rough silver, the PS nanoplastics accelerated toward the silver surface and were adsorbed tightly at the SERS "hot spot" inside the rough silver nanostructure. The proposed ES-SERS method achieved a detection limit of 100 ng/L for 300 and 100 nm PS, 50 ng/L for 50 nm PS, and 30 ng/L for 20 nm PS nanoplastics. It is worth noting that smaller nanoplastics typically exhibit larger analytical enhancement factor values in ES-SERS. According to the difference in electromigration behavior of PS in various sizes, PS nanoplastics under a certain size can be selectively enriched and detected by controlling the electrosorption time. The ES-SERS method was successfully demonstrated for detecting nanoplastics released from the lids of disposable beverage cups. This work opens up new possibilities for size-resolved analysis of nanoplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04284DOI Listing

Publication Analysis

Top Keywords

rough silver
12
nanoplastics
11
trace polystyrene
8
polystyrene nanoplastics
8
nanoplastics size
8
size-resolved analysis
8
es-sers method
8
100 ng/l
8
size-resolved sers
4
sers detection
4

Similar Publications

Carbaryl is a broad-spectrum carbamate fungicide that may pose a threat to ecosystems and human health. To prevent and control the harm caused by excessive application of carbaryl, a full-dimensional divergence effect SERS sensor has been constructed. Biodegradable paper chips were used as sensor substrates.

View Article and Find Full Text PDF

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated.

View Article and Find Full Text PDF

Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics.

View Article and Find Full Text PDF

Mechanical and optical properties of additively manufactured denture base resin in different colors modified with antimicrobial substances: An in vitro study.

J Prosthet Dent

January 2025

Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH.

Statement Of Problem: Acrylic denture base resins are subject to colonization by oral and nonoral bacteria, contributing to the onset of denture stomatitis. However, how the addition of antimicrobial substances affects the mechanical and optical properties of additively manufactured denture base resin remains unclear.

Purpose: The purpose of this in vitro study was to investigate the surface roughness, color stainability, and flexural strength of antimicrobial-modified, additively manufactured polymethyl methacrylate (PMMA) denture base resin in tooth and gingiva colors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!