The latest developments combining deep learning technology and medical image data have attracted wide attention and provide efficient noninvasive methods for the early diagnosis of breast cancer. The success of this task often depends on a large amount of data annotated by medical experts, which is time-consuming and may not always be feasible in the biomedical field. The lack of interpretability has greatly hindered the application of deep learning in the medical field. Currently, deep stable learning, including causal inference, make deep learning models more predictive and interpretable. In this study, to distinguish malignant tumors in Breast Imaging-Reporting and Data System (BI-RADS) category 3-4A breast lesions, we propose BD-StableNet, a deep stable learning model for the automatic detection of lesion areas. In this retrospective study, we collected 3103 breast ultrasound images (1418 benign and 1685 malignant lesions) from 493 patients (361 benign and 132 malignant lesion patients) for model training and testing. Compared with other mainstream deep learning models, BD-StableNet has better prediction performance (accuracy = 0.952, area under the curve = 0.982, precision = 0.970, recall = 0.941,1-score = 0.955 and specificity = 0.965). The lesion area prediction and class activation map results both verify that our proposed model is highly interpretable. The results indicate that BD-StableNet significantly enhances diagnostic accuracy and interpretability, offering a promising noninvasive approach for the diagnosis of BI-RADS category 3-4A breast lesions. Clinically, the use of BD-StableNet could reduce unnecessary biopsies, improve diagnostic efficiency, and ultimately enhance patient outcomes by providing more precise and reliable assessments of breast lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad953eDOI Listing

Publication Analysis

Top Keywords

deep learning
16
deep stable
12
stable learning
12
bi-rads category
12
category 3-4a
12
breast lesions
12
bd-stablenet deep
8
learning model
8
model automatic
8
lesion area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!