A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An audiovisual cognitive optimization strategy guided by salient object ranking for intelligent visual prothesis systems. | LitMetric

Visual prostheses are effective tools for restoring vision, yet real-world complexities pose ongoing challenges. The progress in AI has led to the emergence of the concept of intelligent visual prosthetics with auditory support, leveraging deep learning to create practical artificial vision perception beyond merely restoring natural sight for the blind.This study introduces an object-based attention mechanism that simulates human gaze points when observing the external world to descriptions of physical regions. By transforming this mechanism into a ranking problem of salient entity regions, we introduce prior visual attention cues to build a new salient object ranking (SaOR) dataset, and propose a SaOR network aimed at providing depth perception for prosthetic vision. Furthermore, we propose a SaOR-guided image description method to align with human observation patterns, toward providing additional visual information by auditory feedback. Finally, the integration of the two aforementioned algorithms constitutes an audiovisual cognitive optimization strategy for prosthetic vision.Through conducting psychophysical experiments based on scene description tasks under simulated prosthetic vision, we verify that the SaOR method improves the subjects' performance in terms of object identification and understanding the correlation among objects. Additionally, the cognitive optimization strategy incorporating image description further enhances their prosthetic visual cognition.This offers valuable technical insights for designing next-generation intelligent visual prostheses and establishes a theoretical groundwork for developing their visual information processing strategies. Code will be made publicly available.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ad94a4DOI Listing

Publication Analysis

Top Keywords

cognitive optimization
12
optimization strategy
12
intelligent visual
12
audiovisual cognitive
8
salient object
8
object ranking
8
visual
8
visual prostheses
8
prosthetic vision
8
image description
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!