Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tomato harvesting in intelligent greenhouses is crucial for reducing costs and optimizing management. Agricultural robots, as an automated solution, require advanced visual perception. This study proposes a tomato detection and counting algorithm based on YOLOv8 (TCAttn-YOLOv8). To handle small, occluded tomato targets in images, a new detection layer (NDL) is added to the Neck and Head decoupled structure, improving small object recognition. The ColBlock, a dual-branch structure leveraging Transformer advantages, enhances feature extraction and fusion, focusing on densely targeted regions and minimizing small object feature loss in complex backgrounds. C2fGhost and GhostConv are integrated into the Neck network to reduce model parameters and floating-point operations, improving feature expression. The WIoU (Wise-IoU) loss function is adopted to accelerate convergence and increase regression accuracy. Experimental results show that TCAttn-YOLOv8 achieves an mAP@0.5 of 96.31%, with an FPS of 95 and a parameter size of 2.7 M, outperforming seven lightweight YOLO algorithms. For automated tomato counting, the between predicted and actual counts is 0.9282, indicating the algorithm's suitability for replacing manual counting. This method effectively supports tomato detection and counting in intelligent greenhouses, offering valuable insights for robotic harvesting and yield estimation research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0954898X.2024.2428713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!