DNA Holliday junctions (HJs) are crucial intermediates in genetic recombination and genome repair processes, characterized by a dynamic nature and transitioning among multiple conformations on the timescale ranging from sub-milliseconds to seconds. Although the influence of ions on HJ dynamics has been extensively studied, precise quantification of the thermodynamic feasibility of transitions and detailed kinetic cooperativity remain unexplored. Understanding the heterogeneity of stochastic gene recombination using ensemble-averaged experimental techniques is extremely difficult because of its lack of ability to differentiate dynamics and function in a high spatiotemporal resolution. Herein, we developed a new technique that combines single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular simulation to investigate the kinetic choreography and preferential stability of HJ conformations under ionic conditions that closely mimic the physiological environment relevant to cellular biology. Our findings predict the prevalence of three distinct conformational macrostates in HJ dynamics. At low ion concentrations, HJs transition rapidly among three thermodynamically stable conformational macrostates. However, in a physiological ionic environment, the open conformation becomes predominant. Using a kinetic network model based on the multi-order time correlation function (TCF), we delineated thermodynamic parameters that govern heterogeneous dynamics as a function of divalent ion concentration. Stabilization of conformations due to an ionic environment and activation barriers concertedly affect transition rates between open and closed conformations. Furthermore, we observed a significant enhancement of Mg condensation in the central region of HJs rather than branch ends, leading to a plausible conclusion that the differential stability of conformational states may be governed by the junction region of HJs rather than duplex branches. This study gives a new insight into the complex interplay between the ionic environment and HJ dynamics, offering a comprehensive understanding of their behavior under conditions relevant to cellular biology and roles in key biological processes for creating a heterogeneous nature of life.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02411gDOI Listing

Publication Analysis

Top Keywords

ionic environment
12
dna holliday
8
holliday junctions
8
stability conformational
8
dynamics function
8
conformations ionic
8
relevant cellular
8
cellular biology
8
conformational macrostates
8
region hjs
8

Similar Publications

The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.

View Article and Find Full Text PDF

Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.

View Article and Find Full Text PDF

Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.

View Article and Find Full Text PDF

Mechanism of microplastics in the reduction of cadmium toxicity in tomato.

Ecotoxicol Environ Saf

January 2025

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:

Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.

View Article and Find Full Text PDF

The present investigation delves into the redox reaction between -chlorophenol (-CP) and hexacyanoferrate(III) [HCF(III)], catalyzed by Ag(I) in an alkaline environment. Findings reveal a first-order dependence on both -CP and the oxidant, and the reaction rate showcased a first-order reaction towards Ag(I), which was further amplified by the medium as per the equation = + [OH]. Interestingly, the ionic strength remained unchanged throughout the reaction, exerting no discernible effect on the reaction rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!