A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RMI1 is essential for maintaining rice genome stability at high temperature. | LitMetric

RMI1 is essential for maintaining rice genome stability at high temperature.

Plant J

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.

Published: December 2024

Heat is a critical environmental stress for plant survival. One of its harmful effects on the cells is the disruption of genome integrity. However, the mechanisms by which plants cope with heat-induced DNA damage remain largely unknown. RMI1, a component of the RTR (RECQ4-TOP3α-RMI1) complex, plays a pivotal role in maintaining genome stability. In this study, we identified the target gene RMI1 by characterizing a high-temperature-sensitive mutant. The growth and development of rmi1-1 seedlings carrying a non-frameshift mutation in RMI1 were hindered at 38°C. Abnormal mitotic chromosome behaviours ultimately led to the cell death of root tips. Additionally, the presence of chromosome fragments during anaphase I caused pollen abortion and sterility in rmi1-1 plants. Yeast two-hybrid assays revealed that the interactions between RMI1-1 and RECQ4 or TOP3α were weakened with increasing temperature and entirely ceased at 36°C. In contrast, the functional RMI1 maintained its interactions with RECQ4 or TOP3α under the same conditions. These results indicate that the non-frameshift mutation in RMI1 disrupts the formation of the RTR complex at high temperatures, leading to defects in DNA repair and increased sensitivity of rmi1-1 under heat stress. However, embryos of the rmi1-cr2 mutant with a frameshift mutation in RMI1 exhibited complete lethality. In addition, the overexpression of RMI1 enhanced the heat tolerance in rice. These findings provide insights into the molecular mechanisms that RMI1 responds to high temperatures by maintaining genome stability in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.17076DOI Listing

Publication Analysis

Top Keywords

genome stability
12
mutation rmi1
12
maintaining genome
8
non-frameshift mutation
8
recq4 top3α
8
high temperatures
8
rmi1
7
rmi1 essential
4
essential maintaining
4
maintaining rice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!