Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current solid- and liquid-state electrode materials with extreme physical states show inherent limitation in achieving the ultra-stable batteries. Herein, we present a colloidal electrode design with an intermediate physical state to integrate the advantages of both solid- and liquid-state materials. The colloidal electrode was designed based on the inherent water competition effect of (SO) from the aqueous electrolyte and inherently water-soluble polyethylene glycol (PEG)/ZnI from the cathode. The constructed aqueous Zn||PEG/ZnI colloid battery demonstrated ultra-stable cycling performance with Coulombic efficiencies approaching 100% and a capacity retention of 86.7% over 10,700 cycles, without requiring anodic modification. In addition, the battery also exhibits compatibility with multiple operating conditions including fluctuating charging, limited self-discharging rate, different charging statuses, and fast charging. Moreover, the battery also shows practical potential by integrating with a photovoltaic solar panel charging. This design provides a broad platform for building the next-generation aqueous batteries with ultra-long lifetime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577285 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.111229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!