Nanoscale skyrmions are spin-based quasiparticles that are promising for nonvolatile logic applications. However, the presence of the skyrmion Hall effect (SkHE) in ferromagnetic skyrmions limits their performance in logic devices. Here, we present a detailed micromagnetic modeling study on low-energy skyrmion logic gate circuits based on skyrmions in synthetic antiferromagnetically coupled (SAF) metallic ferromagnetic layers to eliminate the SkHE while reducing current requirements. First, we demonstrate the functionalities of the SAF skyrmion logic inverter gate and other Boolean gates such as NOR, OR, AND, and NAND using the inverter gate block and show the improved performance over their ferromagnetic skyrmion gate counterparts. We analyzed the operation and energy consumption at different stages of the SAF skyrmion logic operation and found that the SAF gates can operate at lower current densities. We designed a multiplexer circuit as a test case and obtained a fast response and low Joule heating. The skyrmion motion through the gates is shown to be stable and efficient in different regions, and cascading the gates creates longer linear motion without the unwanted transverse SkHE. Overall, the results indicate the feasibility of antiferromagnetically coupled skyrmions for low-energy logic with improved performance over ferromagnetic skyrmionics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575631 | PMC |
http://dx.doi.org/10.1039/d4na00706a | DOI Listing |
Nanoscale Adv
December 2024
Department of Electrical and Electronics Engineering, Koç University Sarıyer Istanbul 34450 Turkey
Nanoscale skyrmions are spin-based quasiparticles that are promising for nonvolatile logic applications. However, the presence of the skyrmion Hall effect (SkHE) in ferromagnetic skyrmions limits their performance in logic devices. Here, we present a detailed micromagnetic modeling study on low-energy skyrmion logic gate circuits based on skyrmions in synthetic antiferromagnetically coupled (SAF) metallic ferromagnetic layers to eliminate the SkHE while reducing current requirements.
View Article and Find Full Text PDFNano Lett
November 2024
Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
As topological quasi-particles in magnetic materials, skyrmions and antiskyrmions show potential in spintronics for information storage and computing. However, effectively controlling and separating these entities remain significantly challenging. Here, we demonstrate that anisotropic Kitaev exchange can distinctly influence the static and dynamic behaviors for skyrmions and antiskyrmions, thus aiding their manipulation and separation.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Institute of Physics and Technology, Ufa University of Science and Technology, Ufa 450076, Russia.
In this paper, the stabilization conditions, structure, and properties of possible vortex-like inhomogeneities, including k-skyrmions= 0, 1, 2, 3, 4, in a uniaxial multilayer disk with a columnar defect in the center are investigated based on micromagnetic modeling. Their stability diagrams depending on the Dzyaloshinskii-Moriya interaction, the magnitude of magnetic anisotropy and the defect parameters are determined. New types of vortex-like inhomogeneities that can arise in such samples are found.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States.
Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii-Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT).
View Article and Find Full Text PDFJ Phys Condens Matter
August 2024
Electronic Materials Research Center, Korea Institute of Science & Technology, Seoul, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!