Fracture Mapping is a new technology developed in recent years. This technology visually representing the morphology of fractures by overlaying fracture lines from multiple fracture models onto a standard model through three-dimensional reconstruction. Fracture mapping has been widely used in acetabular fracture, proximal humerus fractures, Pilon fracture, tibial plateau fractures, and so on. This technology provides a new research method for the diagnosis, classification, treatment selection, internal fixation design, and statistical analysis of common fracture sites. In addition, the fracture map can also provide a theoretical basis for the establishment of a biomechanical standardized fracture model. Herein, we reviewed various methods and the most advanced techniques for fracture mapping, and to discuss the issues existing in fracture mapping techniques, which will help in designing future studies that are closer to the ideal. Moreover, we outlined the fracture morphology features of fractures in various parts of the body, and discuss the implications of these fracture mapping studies for fracture treatment, thereby providing reference for research and clinical decision-making on bone and joint injuries to improve patient prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576209 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1471470 | DOI Listing |
Orthop Surg
January 2025
Department of Orthopedics Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
Objective: Inferior pole patellar fractures (IPPFs) pose a significant challenge due to their complex fracture patterns and high risk of complications associated with current treatment methods. This study aims to (1) characterize the fracture patterns of IPPFs using fracture mapping and (2) compare the biomechanical stability and clinical outcomes of treatment with anchor suture with patellar cerclage versus Kirschner-wire tension band combined with patellar cerclage.
Methods: (1) A retrospective analysis was conducted on 61 patients with IPPF.
BMC Geriatr
January 2025
College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.
Background: Ageing populations are set to drive up demand for aged care services, placing strain on economies funding social care systems. Rehabilitation, reablement, and restorative care approaches are essential to this demographic shift as they aim to support independent function and quality of life of older people. Understanding the impact of these approaches requires nuanced insights into their definitions, funding, and delivery within the aged care context.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mining Engineering, College of Engineering, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box: 16417, Ethiopia.
Developing nations like Ethiopia face food and water shortages due to weather and droughts. The Bowa Dayole masonry gravity dam is expected to irrigate farmland downstream. Despite this, the engineering geology is complicated by the presence of highly fractured and weathered aphanitic basaltic rock, along with a weak unwelded to welded tuff rock mass in the dam foundation.
View Article and Find Full Text PDFAnn Ital Chir
January 2025
Medical Department, Ningbo No.9 Hospital, 315020 Ningbo, Zhejiang, China.
Aim: This study aimed to develop a reliable and efficient system for predicting and locating rib fractures in medical images using an ensemble of convolutional neural networks (CNNs).
Methods: We employed five CNN architectures-Visual Geometry Group Network 16 (VGG16), Densely Connected Convolutional Network 169 (DenseNet169), Inception Version 4 (Inception V4), Efficient Network B7 (EfficientNet-B7), and Residual Network Next 50 layers (ResNeXt-50)-trained on a dataset of 840 grayscale computed tomography (CT) scan images in .jpg format collected from 42 patients at a local hospital.
Med Biol Eng Comput
January 2025
Department of Pediatric Orthopedics, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Proximal femoral fractures in children are challenging in clinical treatment due to their unique anatomical and biomechanical characteristics. The distribution and characteristics of fracture lines directly affect the selection of treatment options and prognosis. Pediatric proximal femur fractures exhibit distinctive features, with the distribution and characteristics of the fracture line playing a crucial role in deciding optimal treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!