Herein, we report a study on the preparation, properties, and depolymerization of pristine and vulcanized poly(cyclopentene) (poly(CP)), poly(norbornene--cyclopentene) (poly(NB--CP)) and poly(-dicyclopentadiene--cyclopentene) (poly (DCP--CP)). First, poly(CP), poly(NB--CP) and poly(DCP--CP) were prepared with high molecular weight control ( = 200 000-500 000) using dichloro(3-phenyl-1-inden-1-ylidene)bis(tricyclohexylphosphine)ruthenium(ii). Next, carbon black, zinc oxide and other additives were blended into the pristine polymers using a mixer and twin roll rubber mills at 50 °C, followed by vulcanization in metal molds at 160 °C for 10 min, resulting in molded black rubber specimens. Crosslinking of the vulcanized rubbers was confirmed by solvent swelling test. Ring-closing metathesis depolymerization (RCMD) of the pristine and vulcanized polymers was conducted. Pristine poly(CP) was smoothly degraded into cyclopentene monomers with only 0.001 mol% of [1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene)(tricyclohexylphosphino)ruthenium (HIMes)(PCy)ClRu[double bond, length as m-dash]CHPh (HIMes = 1,3-dimesityl-4,5-dihydroimidazolylidene) in toluene at 25 °C for 1 h ([poly(CP) unit] = 0.50 M). In the case of the copolymers, degradation of pristine poly(NB--CP) and poly(DCP--CP) RCMD also delivered a cyclopentene monomer and residual polynorbornene and poly(-dicyclopentadiene), respectively, demonstrating the feasibility of cyclopentene recycling from copolymers. Complete depolymerization of vulcanized poly(CP) rubber was also efficiently achieved using 1 mol% of (HIMes)(PCy)ClRu[double bond, length as m-dash]CHPh, affording black inorganic precipitate and separable volatile cyclopentene monomer (in toluene at 60 °C for 24 h, [poly(CP)] = 0.50 M). Similarly, vulcanized poly(NB--CP) (or poly(DCP--CP)) rubber was successfully depolymerized under the same conditions, resulting in black inorganic precipitate, polynorbornene (or poly(-dicyclopentadiene)) and a cyclopentene monomer. This study provides a new strategy for monomer recycling of rubber wastes made from cyclopentene-based rubber under relatively mild conditions, contributing to a circular economy and resource efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577345PMC
http://dx.doi.org/10.1039/d4ra06914eDOI Listing

Publication Analysis

Top Keywords

polynb--cp polydcp--cp
12
cyclopentene monomer
12
depolymerization vulcanized
8
vulcanized polycyclopentene
8
ring-closing metathesis
8
metathesis depolymerization
8
monomer recycling
8
pristine vulcanized
8
mol% himespcyclru[double
8
himespcyclru[double bond
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!