A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ML nanospheres as supramolecular templates for the controlled synthesis of Ir-nanoclusters and their use in the chemo-selective hydrogenation of nitro styrene. | LitMetric

AI Article Synopsis

  • * Researchers used a technique involving sulfonate functionalized N-heterocyclic carbene (NHC) Ir complexes and a special structural framework called a G-sphere to create these nanoclusters through hydrogen reduction.
  • * The resulting nanoclusters (1.8 ± 0.4 nm) exhibited a narrow size distribution and were highly effective as catalysts for hydrogenating 4-nitrostyrene, showcasing superior selectivity compared to larger, non-encapsulated Ir clusters.

Article Abstract

Controlled preparation of ultrafine metal nanoclusters (<2 nm) is challenging, yet important as the properties of these clusters are inherently linked to their size and local microenvironment. In the present work, we report the utilization of supramolecular pre-organization of organometallic complexes within well-defined ML coordination spheres for the controlled synthesis of ultrafine Ir nanoclusters by reduction with molecular hydrogen. For this purpose, 24 sulfonate functionalized N-heterocyclic carbene (NHC) Ir complexes (Ir-s) were bound within a well-defined ML nanosphere that is equipped with 24 guanidinium binding sites (G-sphere). Reduction of these pre-organized metal complexes by hydrogenation led to the templated formation of nanoclusters with a narrow size distribution (1.8 ± 0.4 nm in diameter). It was demonstrated through H-DOSY-NMR and HAADF-STEM-EDX experiments that the resulting nanoclusters reside within the nanospheres. The reduction of similar non-encapsulated metal complexes in the presence of nanosphere systems (Ir-s + M-sphere or Ir-p + G-sphere) resulted in larger particles with a broader size distribution (2.3 ± 2.1 nm and 6.6 ± 3.2 nm for Ir-s + M-sphere and Ir-p + G-sphere respectively). The encapsulated nanoclusters were used as a homogeneous catalyst in the selective hydrogenation of 4-nitrostyrene to 4-ethylnitrobenzene and display absolute selectivity, which is even maintained at full conversions, whereas the larger non-encapsulated clusters were less selective as these also showed reduction of the nitro functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575609PMC
http://dx.doi.org/10.1039/d4sc06324dDOI Listing

Publication Analysis

Top Keywords

nanospheres supramolecular
4
supramolecular templates
4
templates controlled
4
controlled synthesis
4
synthesis ir-nanoclusters
4
ir-nanoclusters chemo-selective
4
chemo-selective hydrogenation
4
hydrogenation nitro
4
nitro styrene
4
styrene controlled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!