Herein, we demonstrate a practical dual ligand-enabled iron photocatalysis paradigm-converting all kinds of halogen-containing carboxylates (C X COO, X: F, Cl, Br) into C X radicals for the valuable chloro/fluoro-polyhaloalkylation of non-activated alkenes with easily available trichloroacetonitrile/Selectfluor as the electrophilic halogenation reagent. The modular assembly of the effective iron and C X COO-based light-harvesting species using the two ligands-OMe/CF-substituted bipyridine and acetonitrile/trichloroacetonitrile is evidenced by detailed mechanistic studies. The late-stage modification, low loading amount of iron (TON: 257) and feasible gram-scale synthesis show the utility of this protocol. We thus anticipate that the dual ligand-enabled iron photocatalysis paradigm may facilitate activation and transformation of inert bulk chemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575577 | PMC |
http://dx.doi.org/10.1039/d4sc04038d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!