In polymer nanocomposites, surface modification of silica aggregates can shield Coulombic interactions that inhibit agglomeration and formation of a network of agglomerates. Surface modification is usually achieved with silane coupling agents although carbon-coating during pyrolytic silica production is also possible. Pyrogenic silica with varying surface carbon contents were dispersed in styrene-butadiene (SBR) rubber to explore the impact on hierarchical dispersion, the emergence of meso-scale structures, and the rheological response. Pristine pyrogenic silica aggregates at concentrations above a critical value (related to the Debye screening length) display correlated meso-scale structures and poor filler network formation in rubber nanocomposites due to the presence of silanol groups on the surface. In the present study, flame synthesized silica with sufficient surface carbon monolayers can mitigate the charge repulsion thereby impacting network structural emergence. The impact of the surface carbon on the van der Waals enthalpic attraction, , is determined. The van der Waals model for polymer nanocomposites is drawn through an analogy between thermal energy, , and the accumulated strain, . The rheological response of the emergent meso-scale structures depends on the surface density of both carbon and silanol groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578107PMC
http://dx.doi.org/10.1016/j.polymer.2022.125407DOI Listing

Publication Analysis

Top Keywords

surface carbon
12
meso-scale structures
12
polymer nanocomposites
8
surface modification
8
silica aggregates
8
pyrogenic silica
8
rheological response
8
silanol groups
8
van der
8
der waals
8

Similar Publications

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Recycling of Post-Consumer Waste Polystyrene Using Commercial Plastic Additives.

ACS Cent Sci

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.

View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.

View Article and Find Full Text PDF

This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!