Microbiome-based therapies for Parkinson's disease.

Front Nutr

Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India.

Published: November 2024

The human gut microbiome dysbiosis plays an important role in the pathogenesis of Parkinson's disease (PD). The bidirectional relationship between the enteric nervous system (ENS) and central nervous system (CNS) under the mediation of the gut-brain axis control the gastrointestinal functioning. This review article discusses key mechanisms by which modifications in the composition and function of the gut microbiota (GM) influence PD progression and motor control loss. Increased intestinal permeability, chronic inflammation, oxidative stress, α-synuclein aggregation, and neurotransmitter imbalances are some key factors that govern gastrointestinal pathology and PD progression. The bacterial taxa of the gut associated with PD development are discussed with emphasis on the enteric nervous system (ENS), as well as the impact of gut bacteria on dopamine production and levodopa metabolism. The pathophysiology and course of the disease are associated with several inflammatory markers, including TNF-α, IL-1β, and IL-6. Emerging therapeutic strategies targeting the gut microbiome include probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). The article explored how dietary changes may affect the gut microbiota (GM) and the ways that can affect Parkinson's disease (PD), with a focus on nutrition-based, Mediterranean, and ketogenic diets. This comprehensive review synthesizes current evidence on the role of the gut microbiome in PD pathogenesis and explores its potential as a therapeutic target. Understanding these complex interactions may assist in the development of novel diagnostic tools and treatment options for this neurodegenerative disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576319PMC
http://dx.doi.org/10.3389/fnut.2024.1496616DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
gut microbiome
12
nervous system
12
enteric nervous
8
system ens
8
gut microbiota
8
gut
7
microbiome-based therapies
4
therapies parkinson's
4
disease
4

Similar Publications

Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.

View Article and Find Full Text PDF

Purpose: A debilitating and poorly understood symptom of Parkinson's disease (PD) is freezing of gait (FoG), which increases the risk of falling. Clinical evaluations of FoG, relying on patients' subjective reports and manual examinations by specialists, are unreliable, and most detection methods are influenced by subject-specific factors.

Method: To address this, we developed a novel algorithm for detecting FoG events based on movement signals.

View Article and Find Full Text PDF

Background: Previous studies have confirmed the significant role of cathepsins in the development of neurodegenerative diseases. We aimed to determine whether genetically predicted 10 cathepsins may have a causal effect on Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).

Methods: We conducted a two-sample bidirectional Mendelian randomization (MR) study using publicly available data from genome-wide association study (GWAS) to assess the causal associations between 10 cathepsins and three neurodegenerative diseases, including AD, PD, and ALS.

View Article and Find Full Text PDF

Exploring the intersection between orthostatic hypotension and daytime sleepiness in Parkinson's disease.

J Neurol Sci

December 2024

James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.

Introduction: Daytime sleepiness, reported in about 50 % of patients with Parkinson's disease (PD), is associated with high morbidity, poor quality of life and increased risk for accidents. While an association between dysautonomia and daytime sleepiness in early, de-novo PD has been reported, our understanding of the role of medications, cognitive status and co-morbidites on this relationship is inadequate.

Methods: Data were analyzed from the prospective Cincinnati Cohort Biomarkers Program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!