The kidney plays a crucial role in maintaining the body's microenvironment homeostasis. However, current treatment options and therapeutic agents for chronic kidney disease (CKD) are limited. Fortunately, the advent of kidney organoids has introduced a novel model for studying kidney diseases and drug screening. Despite significant efforts has been leveraged to mimic the spatial-temporal dynamics of fetal renal development in various types of kidney organoids, there is still a discrepancy in cell types and maturity compared to native kidney tissue. The extracellular matrix (ECM) plays a crucial role in regulating cellular signaling, which ultimately affects cell fate decision. As a result, ECM can refine the microenvironment of organoids, promoting their efficient differentiation and maturation. This review examines the existing techniques for culturing kidney organoids, evaluates the strengths and weaknesses of various types of kidney organoids, and assesses the advancements and limitations associated with the utilization of the ECM in kidney organoid culture. Additionally, it presents a discussion on constructing specific physiological and pathological microenvironments using decellularized extracellular matrix during certain developmental stages or disease occurrences, aiding the development of kidney organoids and disease models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576200 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1472361 | DOI Listing |
Xenotransplantation
January 2025
Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Organ transplants are used to treat many end-stage diseases, but a shortage of donors means many patients cannot be treated. Xenogeneic organs have become an important part of filling the donor gap. Many current studies of kidney, heart, and liver xenotransplantation have used gene-edited pig organs on brain-dead recipients.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Recent research has revealed an accumulation of microplastics (MPs) in the environment and human tissues, giving rise to concerns about their potential toxicity. The kidney is a vital organ responsible for various physiological functions. Early kidney development is crucial for ensuring proper structure and function.
View Article and Find Full Text PDFTransl Oncol
December 2024
Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany. Electronic address:
Wilms tumors (WT) are characterized by variable contributions of blastemal, epithelial and stromal elements, reflecting their diverse cellular origins and genetic drivers. In vitro models remain rare, despite a growing need to better characterize tumor biology and evaluate new treatments. Using three approaches, we have now established a large collection of long-term cultures that represent this diversity.
View Article and Find Full Text PDFWorld J Gastrointest Surg
December 2024
State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.
Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!