Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chinese hamster ovary (CHO) cell lines, derived as subclones from the original CHO cell line, are widely used hosts for current biopharmaceutical productions. Recently, a highly proliferative host cell line, CHO-MK, was established from the Chinese hamster ovary tissue. In this study, we assessed the fundamental culture characteristics and capabilities of CHO-MK cells for monoclonal antibody (mAb) production using specified chemically defined media. To achieve this, we established fed-batch cultures of model CHO-MK cells in shake flasks and ambr15 and 2 L bioreactors under various conditions. The mAb-producing CHO-MK cell line A produced 12.6 g/L of antibody within 7 days in the fed-batch culture using a 2 L bioreactor, with a seeding density of 1 × 10 cells/mL. This performance corresponded to a space-time yield of 1.80 g/L/day, representing a productivity level that could be challengingly attained in fed-batch cultures using conventional CHO cells. In addition, when we subjected six different mAb-producing CHO-MK cell lines to fed-batch culture in the ambr15 bioreactor for 7 days, the antibody production ranged between 5.1 and 10.8 g/L, confirming that combining CHO-MK cells and specified media leads to enhanced versatility. These discoveries underscore that CHO-MK cells combined with specified media might represent a next-generation production platform, which could potentially respond to an increasing demand for antibody drugs, reducing production costs, and shortening antibody drug development times. This study is expected to serve as a benchmark for future production process development using CHO-MK cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573942 | PMC |
http://dx.doi.org/10.1007/s10616-024-00669-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!