Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBrthin films can be doubled by low fluences (<1 × 10at·cm) of ion implantation with an acceleration voltage of 20 keV. We attribute this phenomenon to ion beam induced shallow minority charge carrier trapping induced by nuclear stopping, dominant by heavy noble gases (Ar, Xe). Simultaneously, the PL quantum yield (PLQY) is altered during noble gas ion implantation inversely correlates with the electronic stopping power of the implanted element, hence Ar implantation reduces the PLQY, while Ne even causes a PLQY enhancement. These results thus provide a guide to separate the effect of nuclear and electronic damage during ion implantation into halide perovskites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad91bd | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!