Controlling a kisser: fermented products and commercial insects' lures as attractants of kissing bugs.

Bull Entomol Res

El Colegio de la Frontera Sur, Unidad Tapachula, Carretera Antiguo Aeropuerto Km. 2.5, Centro, Tapachula, Chiapas, 30700, México.

Published: November 2024

AI Article Synopsis

  • Triatomines are blood-sucking insects that spread Chagas disease, so trapping them is essential for reducing human contact and controlling the disease.
  • The study tested the attraction of different triatomine species to volatiles from fermented products and commercial lures using double-choice bioassays.
  • The results showed that volatiles from lactic fermentation and some fermented fruits effectively attracted triatomines, indicating their potential for disease control, while some products seemed to repel the insects.

Article Abstract

Triatomines (Hemiptera: Heteroptera: Reduviidae) are hematophagous insects, well-known for their vectorial role in transmitting Chagas (Kinetoplastida: Trypanosomatidae) parasites, the etiological agent of Chagas disease. Trapping these insects would limit human-triatomine interaction and, thus, control the disease. In this context, there is a critical need for effective lures to control triatomines. Through double-choice bioassays, we investigated the preference of Klug, Stal, and Stal triatomines for: (a) volatiles from fermented products (various fermentation types and substrates) and (b) commercial insect lures. Furthermore, we identified the chemical composition of these volatiles through headspace collection using Solid Phase Micro Extraction coupled with Gas Chromatograph-Mass Spectrometer (HS-SPME-GC-MS). Volatiles from lactic fermentation and certain fermented fruits, along with commercial lures, attracted triatomines, while other products exhibited possible repellent or dislodging properties. These findings hold promise for the control of triatomines and, ultimately, Chagas disease.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007485324000634DOI Listing

Publication Analysis

Top Keywords

fermented products
8
chagas disease
8
control triatomines
8
triatomines
5
controlling kisser
4
kisser fermented
4
products commercial
4
commercial insects'
4
lures
4
insects' lures
4

Similar Publications

Net energy of grains for dairy goats differed with processing methods and grain types.

J Anim Sci Biotechnol

January 2025

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.

Methods: Eighteen castrated Guanzhong dairy goats (44.

View Article and Find Full Text PDF

Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.

View Article and Find Full Text PDF

Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.

View Article and Find Full Text PDF

Nucleosides and polysaccharides are the main bioactive ingredients of Cordyceps genus. Nucleosides shows significant differences in different Cordyceps species. However, the differences of polysaccharides have not been decoded.

View Article and Find Full Text PDF

Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies.

Bioresour Technol

January 2025

College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:

Butanol is a more desirable second-generation biomass energy source. Acetone-butanol-ethanol (ABE) fermentation using Clostridium spp. is a promising method for butanol production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!