A new approach to analysis of prostate hybrid multidimensional MRI (HM-MRI) data was introduced in this study. HM-MRI data were acquired for a combination of a few echo times (TEs) and a few b-values. Naturally, there is a matrix associated with HM-MRI data for each image pixel. To process the data, we first linearized HM-MRI data by taking the natural logarithm of the imaging signal intensity. Subsequently, a hybrid symmetric matrix was constructed by multiplying the matrix for each pixel by its own transpose. The eigenvalues for each pixel could then be calculated from the hybrid symmetric matrix. In order to compare eigenvalues between patients, three b-values and three TEs were used, because this was smallest number of b-values and TEs among all patients. The results of eigenvalues were displayed as qualitative color maps for easier visualization. For quantitative analysis, the ratio (λ) of eigenvalues (λ, λ, λ) was defined as λ = (λ/λ)/λ to compare region of interest (ROI) between prostate cancer (PCa) and normal tissue. The results show that the combined eigenvalue maps show PCas clearly and these maps are quite different from apparent diffusion coefficient (ADC) and T2 maps of the same prostate. The PCa has significant larger λ, smaller ADC and smaller T2 values than normal prostate tissue (p < 0.001). This suggests that the matrix-based method for analyzing HM-MRI data provides new information that may be clinically useful. The method is easy to use and could be easily implemented in clinical practice. The eigenvalues are associated with combination of ADC and T2 values, and could aid in the identification and staging of PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713853PMC
http://dx.doi.org/10.1002/acm2.14544DOI Listing

Publication Analysis

Top Keywords

hm-mri data
16
hybrid multidimensional
8
hybrid symmetric
8
symmetric matrix
8
data
6
prostate
5
introduction matrix-based
4
matrix-based method
4
method analyzing
4
hybrid
4

Similar Publications

Prospective Validation of an Automated Hybrid Multidimensional MRI Tool for Prostate Cancer Detection Using Targeted Biopsy: Comparison with PI-RADS-based Assessment.

Radiol Imaging Cancer

January 2025

From the Department of Radiology (A.C., A.N.Y., R.E., C.H., G.L., M.M., E.B.J., A.L.C., B.G., G.S.K., A.O.), Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy (A.C., A.N.Y., M.M., A.L.C., B.G.), Department of Surgery, Section of Urology (G.G., L.F.R., P.K.M., S.E.), Department of Pathology (T.A.), and Department of Public Health Sciences (M.G.), University of Chicago, 5841 S Maryland Ave, MC 2026, Chicago, IL 60637.

Purpose To evaluate the use of an automated hybrid multidimensional MRI (HM-MRI)-based tool to prospectively identify prostate cancer targets before MRI/US fusion biopsy in comparison with Prostate Imaging and Reporting Data System (PI-RADS)-based multiparametric MRI (mpMRI) evaluation by expert radiologists. Materials and Methods In this prospective clinical trial (ClinicalTrials.gov registration no.

View Article and Find Full Text PDF

A new approach to analysis of prostate hybrid multidimensional MRI (HM-MRI) data was introduced in this study. HM-MRI data were acquired for a combination of a few echo times (TEs) and a few b-values. Naturally, there is a matrix associated with HM-MRI data for each image pixel.

View Article and Find Full Text PDF

Purpose: The interpretation of prostate multiparametric magnetic resonance imaging (MRI) is subjective in nature, and there is large inter-observer variability among radiologists and up to 30% of clinically significant cancers are missed. This has motivated the development of new MRI techniques and sequences, especially quantitative approaches to improve prostate cancer diagnosis. Using hybrid multidimensional MRI, apparent diffusion coefficient (ADC) and T2 have been shown to change as a function of echo time (TE) and b-values, and that this dependence is different for cancer and benign tissue, which can be exploited for prostate cancer diagnosis.

View Article and Find Full Text PDF

Purpose: Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa).

Methods: All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting.

View Article and Find Full Text PDF

Comparing Radiologist Performance in Diagnosing Clinically Significant Prostate Cancer with Multiparametric versus Hybrid Multidimensional MRI.

Radiology

November 2022

From the Department of Radiology (G.H.L., A.C., I.K., R.E., A.Y., C.B.H., G.S.K., A.O.), Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy (G.H.L., A.C., R.E., A.Y., C.B.H., G.S.K., A.O.), and Department of Public Health Sciences (M.G.), University of Chicago, 5841 S Maryland Ave, MC 2026, Chicago, IL 60637.

Background Variability of acquisition and interpretation of prostate multiparametric MRI (mpMRI) persists despite implementation of the Prostate Imaging Reporting and Data System (PI-RADS) version 2.1 due to the range of reader experience and subjectivity of lesion characterization. A quantitative method, hybrid multidimensional MRI (HM-MRI), may introduce objectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!