β-PIX, a Rac1/Cdc42-specific guanine nucleotide exchange factor, is known to regulate actin cytoskeleton remodeling during cell migration. In this study, we investigated the effects of β-PIX-d, an isoform of β-PIX, on neocortical development and neuritogenesis. Overexpression of β-PIX-d in the embryonic neocortex induced increased cell clusters and enhanced neurite outgrowth in cortical neurons. Following in utero electroporation of β-PIX-d expression vectors into neuronal progenitor cells at embryonic day 13.5 (E13.5), histological analysis at postnatal day 0 (P0) revealed the presence of clustered neurons and neurites outside of the marginal zone (MZ). Immunofluorescence staining with the neuronal marker TuJ1 confirmed that the clustered structures were predominantly composed of neurons. Layer-specific marker analysis further demonstrated the misplacement of layer V-VI neurons into layer I and the subarachnoid space. In primary neocortical cultures, β-PIX-d overexpression promoted neuritogenesis and increased Rac1 activity, as detected by pull-down assays. These findings suggest that β-PIX-d and Rac1 interactions play a critical role in the formation of neocortical clustering and the regulation of neuritogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581827PMC
http://dx.doi.org/10.5607/en24026DOI Listing

Publication Analysis

Top Keywords

guanine nucleotide
8
nucleotide exchange
8
exchange factor
8
cortical neurons
8
β-pix-d
6
neurons
5
β-pix-d member
4
member arhgef7
4
arhgef7 guanine
4
factor family
4

Similar Publications

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Signal Transduct Target Ther

December 2024

National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.

Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Receptor-independent regulation of Gα13 by alpha-1-antitrypsin C-terminal peptides.

J Biol Chem

December 2024

Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Homeostatic Medicine, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address:

Alpha-1-antitrypsin (AAT), a circulating serine protease inhibitor, is an acute inflammatory response protein with anti-inflammatory functions. The C-terminal peptides of AAT are found in various tissues and have been proposed as putative bioactive peptides with multiple functions, but its mechanism of action remains unclear. We previously reported that a mouse AAT C-terminal peptide of 35 amino acids (mAAT-C) penetrates plasma membrane and associates guanine nucleotide-binding protein subunit alpha 13 (Gα13).

View Article and Find Full Text PDF

Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.

View Article and Find Full Text PDF

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!