Soil properties drive nitrous oxide accumulation patterns by shaping denitrifying bacteriomes.

Environ Microbiome

State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.

Published: November 2024

AI Article Synopsis

  • This study examines how both soil properties and microbial communities affect nitrous oxide (N₂O) emissions in two different agricultural soils from China, revealing that black soil (BS) produces more N₂O than fluvo-aquic soil (FS).
  • Through cross-inoculation experiments, researchers demonstrated that the type of recipient soil significantly influences gas emissions regardless of the microbial inoculum, with BS showing a higher N₂O ratio than FS.
  • Metagenomic analysis indicated that the denitrifying bacterial communities adapt based on soil type, suggesting that optimizing soil conditions could help reduce N₂O emissions in agriculture.

Article Abstract

In agroecosystems, nitrous oxide (N₂O) emissions are influenced by both microbiome composition and soil properties, yet the relative importance of these factors in determining differential N₂O emissions remains unclear. This study investigates the impacts of these factors on N₂O emissions using two primary agricultural soils from northern China: fluvo-aquic soil (FS) from the North China Plain and black soil (BS) from Northeast China, which exhibit significant differences in physicochemical properties. In non-sterilized controls (NSC), we observed distinct denitrifying bacterial phenotypes between FS and BS, with BS exhibiting significantly higher N₂O emissions. Cross-inoculation experiments were conducted by introducing extracted microbiomes into sterile recipient soils of both types to disentangle the relative contributions of soil properties and microbiomes on N₂O emission potential. The results showed recipient-soil-dependent gas kinetics, with significantly higher N₂O/(N₂O + N₂) ratios in BS compared to FS, regardless of the inoculum type. Metagenomic analysis further revealed significant shifts in denitrification genes and microbial diversity of the inoculated bacteriomes influenced by the recipient soil. The higher ratios of nirS/nosZ in FS and nirK/nosZ in BS indicated that the recipient soil dictates the formation of different denitrifying guilds. Specifically, the BS environment fosters nirK-based denitrifiers like Rhodanobacter, contributing to higher N₂O accumulation, while FS supports a diverse array of denitrifiers, including Pseudomonas and Stutzerimonas, associated with complete denitrification and lower N₂O emissions. This study underscores the critical role of soil properties in shaping microbial community dynamics and greenhouse gas emissions. These findings highlight the importance of considering soil physicochemical properties in managing agricultural practices to mitigate N₂O emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580698PMC
http://dx.doi.org/10.1186/s40793-024-00643-9DOI Listing

Publication Analysis

Top Keywords

n₂o emissions
24
soil properties
16
soil
9
nitrous oxide
8
n₂o
8
physicochemical properties
8
higher n₂o
8
recipient soil
8
emissions
7
properties
5

Similar Publications

In light of the Chinese government's dual carbon goals, achieving cleaner production activities has become a central focus, with regional environmental collaborative governance, including the management of agricultural carbon reduction, emerging as a mainstream approach. This study examines 268 prefecture-level cities in China, measuring the carbon emission efficiency of city agriculture from 2001 to 2022. By integrating social network analysis and a modified gravity model, the study reveals the characteristics of the spatial association network of city agricultural carbon emission efficiency in China.

View Article and Find Full Text PDF

Acoustic emission information can describe the damage degree of rock samples in the process of failure. However, as a discrete non-stationary signal, acoustic emission information is difficult to be effectively processed by conventional methods, while wavelet analysis is an effective method for non-stationary signal processing. Therefore, acoustic emission signal is deeply studied by using wavelet analysis method.

View Article and Find Full Text PDF

Climate-driven distribution shifts of Iranian amphibians and identification of refugia and hotspots for effective conservation.

Sci Rep

December 2024

Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.

This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).

View Article and Find Full Text PDF

Global changes in extreme tropical cyclone wave heights under projected future climate conditions.

Sci Rep

December 2024

Weather Program Office, Ocean and Atmospheric Research, NOAA, Silver Spring, MD, USA.

Tropical cyclone risks are expected to increase with climate change. One such risk is extreme ocean waves generated by surface winds from these systems. We use synthetic databases of both historical (1980-2017) and future (2015-2050) tropical cyclone tracks to generate wind fields and force a computationally efficient wave model to estimate significant wave heights across all global tropical cyclone basins.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!