Background: Although antibiotics have significantly improved human and animal health, their intensive use leads to the accumulation of antimicrobial resistance (AMR) in the environment. Moreover, certain waste management practices create the ideal conditions for AMR development while providing predictable resources for wildlife. Here, we investigated the role of landfills in the potentiation of New World vultures to disseminate environmental AMR. We collected 107 samples (soil, water, and feces) between 2023 and 2024, in different bird use sites (roosts, landfills and boneyards).
Results: We isolated enterococci (EN), Escherichia coli (EC), and Salmonella spp. (SM), performed antibiotic susceptibility tests, and quantified the presence of antibiotic resistance genes (ARGs) within all samples. We identified EN, EC, and SM, in 50, 37, and 26 samples, from the three vulture use areas, respectively. AMR was mainly to aminoglycoside, cephalosporin, and tetracycline, and the prevalence of multidrug resistance (MDR) was 5.3% (EC), 78.2% (EN), and 17.6% (SM). Variations in bacterial abundance and AMR/MDR profiles were found based on the season, use site, and sample types, which was corroborated by ARG analyses.
Conclusions: Our study suggests that landfills constitute a source of zoonotic pathogens and AMR for wildlife, due to readily available refuse input. Using non-invasive molecular methods, we highlight an often-ignored ecosystem within the One Health paradigm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577912 | PMC |
http://dx.doi.org/10.1186/s12866-024-03621-w | DOI Listing |
BMC Oral Health
December 2024
Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
Background: Endodontic emergencies, often presented as acute pain or swelling, constitute a substantial challenge in dental practice. While effective management emphasizes prompt intervention, antibiotics are typically indicated only when systemic signs and symptoms are present. There is limited research exists on evaluating the knowledge and clinical approach of dental practitioners in managing endodontic emergencies from our region of the world.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
Background: Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address:
Background: The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective.
View Article and Find Full Text PDFClin Microbiol Infect
December 2024
Vita Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!