A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coupling of unactivated alkyl electrophiles using frustrated ion pairs. | LitMetric

Coupling of unactivated alkyl electrophiles using frustrated ion pairs.

Nature

Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland.

Published: December 2024

Cross-electrophile coupling reactions have evolved into a major strategy for rapidly assembling important organic molecules. Two readily accessible electrophiles are coupled to form new C-C bonds, providing a key advantage over traditional cross-coupling strategies that require the preformation of reactive organometallic species. Yet, the formation of C(sp)-C(sp) bonds that form the core of nearly all organic compounds remains highly challenging with current approaches, calling for the design of innovative new strategies. Here we report a distinct, transition-metal-free platform to form such bonds without the need for activating or stabilizing groups on the coupling partners. The reaction is enabled by an unusual single-electron transfer in a frustrated ion pair, and it can couple fragments containing functional groups that would be challenging in related transition-metal-catalysed processes. Moreover, we could further leverage this new mechanistic manifold in the design of other reactions, showing the broad potential of this type of reactivity. We anticipate that our results will provide a framework for further exploration of this reactivity pattern to tackle challenging problems in organic synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618088PMC
http://dx.doi.org/10.1038/s41586-024-08195-1DOI Listing

Publication Analysis

Top Keywords

frustrated ion
8
coupling unactivated
4
unactivated alkyl
4
alkyl electrophiles
4
electrophiles frustrated
4
ion pairs
4
pairs cross-electrophile
4
cross-electrophile coupling
4
coupling reactions
4
reactions evolved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!