A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational Insights into Tunable Reversible Network Materials: Accelerated ReaxFF Kinetics of Furan-Maleimide Diels-Alder Reactions for Self-Healing and Recyclability. | LitMetric

In this study, ReaxFF molecular dynamics simulations were benchmarked and used to study the relative kinetics of the retro Diels-Alder reaction between furan and -methylmaleimide. This reaction is very important for the creation of polymer networks with self-healing and recyclable properties, since they can be used as reversible linkers in the network. So far, the reversible Diels-Alder reaction has not yet been studied by using reactive molecular dynamics simulations. This work is, thus, the first step in simulating a covalent adaptable network (CAN) using Diels-Alder reactions as reversible linkers. For both and , the bond breaking in 40 product molecules was simulated using the bond boost method and the / ratio was evaluated. This ratio was benchmarked against density functional theory (DFT) and experimental results for a changing set of bond boost parameters. Given their importance to understand how the CAN performs, the effect of the addition of a polymer backbone and the effect of temperature were successfully simulated using our newly parametrized reactive force field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c05470DOI Listing

Publication Analysis

Top Keywords

diels-alder reactions
8
molecular dynamics
8
dynamics simulations
8
diels-alder reaction
8
reversible linkers
8
bond boost
8
computational insights
4
insights tunable
4
reversible
4
tunable reversible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!