Purpose: Necrotizing enterocolitis (NEC) is the most severe gastrointestinal disease in preterm infants caused by an exaggerated intestinal epithelial immune activation. Several studies show that modulation of toll-like receptor 9 (TLR9) activity may have positive effects on preventing intestinal inflammatory mechanisms ultimately resulting in NEC development. In this study, the effect of various infant formulas (IF) and the probiotic strain Limosilactobacillus fermentum CECT5716 on TLR9 activation were analyzed in vitro.
Methods: First, TLR4 and TLR9 expression was analyzed on human primary intestinal epithelial cells (P-IECs) by qPCR and Western blot analysis. Then genetically designed HEK-Dual™ hTLR9 (NF/IL8) reporter cells (HEK-Dual) were treated with different IFs, L. fermentum CECT5716, and different functional components to measure TLR9 activation via luminescence. Finally, the IFs were investigated in P-IECs to analyze TLR downstream signaling by Western blot analysis.
Results: IFs containing intact protein and L. fermentum CECT5716 activated TLR9 in HEK-Dual cells, but the functional components lactoferrin, L-5-methyltetrahydrofolate, and hydrolyzed whey proteins failed to activate TLR9. In P-IECs, the IFs induced increased phosphorylation of MAPK8/9 of the TLR signaling pathway and significantly reduced IL6 levels. Consistently, IL6 levels were increased in P-IECs when TLR9-signaling was inhibited. Interestingly, L. fermentum CECT5716 enhanced TLR9-signaling and increased NF-kappa-B inhibitor alpha-phosphorylation.
Conclusion: We found out that the used control formula, prebiotic formula, prebiotic formula with hydrolyzed-protein, and L. fermentum CECT5716 reduce IL6 levels in human P-IECs through TLR9 activation. L. fermentum CECT5716 and the here tested IFs could be a promising approach for modulation of gut health in infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579199 | PMC |
http://dx.doi.org/10.1007/s00394-024-03507-7 | DOI Listing |
PLoS Pathog
January 2025
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.
View Article and Find Full Text PDFBacteria can change morphology in response to stressors and changes in their environment, including infection of a host. We previously identified the bacterial species, , which uses nutrient-induced filamentation as a novel mechanism for cell-to-cell spreading in the intestinal epithelial cells of a nematode host. To further investigate the conservation of nutrient-induced filamentation in Bordetellae, we utilized the turkey-infecting species which filaments in vitro when switched from a standard growth media to an enriched media.
View Article and Find Full Text PDFMucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.
View Article and Find Full Text PDFThe gastrointestinal epithelium serves as a critical barrier separating intestinal lumen contents from the underlying tissue environment. Structure and function of the apical junctional complex (AJC), comprising tight and adherens junctions, are essential for establishing and maintaining a polarized and functional epithelial barrier. In this study, we investigated mechanisms by which an apical polarity protein Crumbs homolog 3 (CRB3) regulates AJC assembly and barrier function in primary murine intestinal epithelial cells.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
Inflammatory bowel disease is a collection of intestinal disorders that cause inflammation in the digestive tract. Prolonged inflammation in the gastrointestinal tract is a major risk factor for colorectal cancer. The objective of this study was to fucus on gene expression levels of (KRT-14; associated with epithelial cell integrity) and enhancer of zeste homolog-1 (EZH-2; involved in cellular proliferation) in a IBD rat model in order to rule out impact of nutraceuticals (pumpkin seed oil; PSO) as a complementary approach to conventional treatments of IBD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!