Deep ultraviolet (DUV) nonlinear optical (NLO) crystals with balanced performance are crucial for extending laser wavelengths into the DUV region, essential for various laser applications. However, developing ideal DUV crystals is challenging due to stringent requirements: strong second-harmonic generation (SHG) response, short cut-off wavelength, and effective phase-matching behavior. DUV NLO borates, which feature π-conjugated groups, have garnered attention for their higher SHG coefficients compared to phosphates. However, phosphates typically show short UV cut-off edges due to the large HOMO-LUMO gap (approximately 9.6 eV) of the [PO₄] units. To enhance the SHG effect while maintaining DUV transparency in phosphates, several strategies have been proposed: 1) using distorted polymerized P-O groups like isolated C₁-[P₃O₁₀]⁵ and [P₂O₇]⁴; 2) aligning isolated [PO₄] tetrahedra along the polar screw axis; 3) introducing additional NLO-active units; and 4) exploring new units derived from [PO₄], such as [PO₃F] tetrahedra. These strategies have led to the successful development of various non-centrosymmetric phosphates, highlighting their potential as DUV NLO candidates. This review explores the relationship between their crystal structures and DUV NLO performance, and proposes future directions for developing ideal DUV NLO materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202403991 | DOI Listing |
Dalton Trans
December 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
In recent years, hydroxyborates with excellent properties have attracted much attention. Through dedicated efforts, three new hydroxyborates-KBO(OH), CsBO(OH), and CsBO(OH)-have been successfully synthesized in a closed system. The ultraviolet (UV) cut-off edges of both KBO(OH) and CsBO(OH) are below 200 nm, indicating their potential as candidates for deep-ultraviolet (DUV) materials.
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai201418, China.
The discovery and synthesis of new NLO materials in the ultraviolet (UV) region are crucial to developing laser technology. The chemical substitution strategy is an effective pathway to design potential UV or DUV NLO crystals. Herein, two new compounds, KNaCaY(BO) and KNaCaLu(BO), have been synthesized using KBO·4HO as the template.
View Article and Find Full Text PDFInorg Chem
December 2024
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
Angew Chem Int Ed Engl
December 2024
Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mails.
Exploring new nonlinear optical (NLO) materials is an urgent need for advanced photoelectric technologies. However, the discovery of new materials with targeted properties is time-consuming, and involves various challenges by the traditional trial-and-error experiments. Recently, the theoretical prediction-guided structural design has been demonstrated as a feasible way for efficiently developing new NLO materials, and a large number of NLO candidates with excellent optical properties have been explored.
View Article and Find Full Text PDFChemistry
November 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!