Design of Biocompatible Nanomaterials Using Quasi-SMILES and Recurrent Neural Networks.

ACS Appl Mater Interfaces

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.

Published: December 2024

Screening nanomaterials (NMs) with desired properties from the extensive chemical space presents significant challenges. The potential toxicity of NMs further limits their applications in biological systems. Traditional methods struggle with these complexities, but generative models offer a possible solution to producing new molecules without prior knowledge. However, converting complex 3D nanostructures into computer-readable formats remains a critical prerequisite. To overcome these challenges, we proposed an innovative deep-learning framework for the design of biocompatible NMs. This framework comprises two predictive models and a generative model, utilizing a Quasi-SMILES representation to encode three-dimensional structural information on NMs. Our generative model successfully created 289 new NMs not previously seen in the training set. The predictive models identified a particularly promising NM characterized by high cellular uptake and low toxicity. This NM was successfully synthesized, and its predicted properties were experimentally validated. Our approach advances the application of artificial intelligence in NM design and provides a practical solution for balancing functionality and toxicity in NMs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c15600DOI Listing

Publication Analysis

Top Keywords

design biocompatible
8
toxicity nms
8
predictive models
8
generative model
8
nms
6
biocompatible nanomaterials
4
nanomaterials quasi-smiles
4
quasi-smiles recurrent
4
recurrent neural
4
neural networks
4

Similar Publications

A two-step, biocompatible strategy enables site-specific generation of branched and macrocyclic peptide-protein conjugates. Solvent-exposed cysteines on proteins are modified by a small bifunctional reagent at near-physiological pH, followed by cyanopyridine-aminothiol click reactions to create branched or macrocyclic peptide architectures. This method offers design strategies for next-generation protein therapeutics.

View Article and Find Full Text PDF

This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.

View Article and Find Full Text PDF

Engineered living materials (ELMs), which usually comprise bacteria, fungi, or animal cells entrapped in polymeric matrices, offer limitless possibilities in fields like drug delivery or biosensing. Determining the conditions that sustain ELM performance while ensuring compatibility with ELM hosts is essential before testing them in vivo. This is critical to reduce animal experimentation and can be achieved through investigations.

View Article and Find Full Text PDF

Gelatin-based biomaterials have emerged as promising candidates for bioadhesives due to their biodegradability and biocompatibility. However, they often face limitations due to the uncontrollable phase transition of gelatin, which is dominated by hydrogen bonds between peptide chains. Here, we developed controllable phase transition gelatin-based (CPTG) bioadhesives by regulating the dynamic balance of hydrogen bonds between the peptide chains using 2-hydroxyethylurea (HU) and punicalagin (PA).

View Article and Find Full Text PDF

Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!