The current study aimed to generate a sulfhydryl-modified β-cyclodextrin-silymarin complex (sulfhydryl-modified β-CD-SMN complex) and to evaluate the enchantment in solubility, permeability, and bioavailability of a model BCS Class IV drug silymarin (SMN). For this purpose, sulfhydryl-modified β-CD was synthesized by replacing all primary and secondary -OH groups at the β-CD backbone with sulfhydryl groups via a novel microwave-assisted technique. Afterward, sulfhydryl-modified β-CD was complexed with silymarin and characterized by FTIR and H NMR spectroscopy. Moreover, no. of sulfhydryl groups and their oxidative stability, solubility, safety, mucoadhesion, release, diffusion, and rheological studies were performed. Furthermore, in-vivo studies were conducted to confirm enhanced pharmacokinetic properties of silymarin. Sulfhydryl-modified β-CD showed 8291 ± 418 μmol/g sulfhydryl groups that were prone to oxidation at pH ≥ 5, however, most of the sulfhydryl groups were found stable at pH 4 having a pKa value of 8.3. Modified β-CD oligomer showed improved solubility of SMN, significantly enhanced drug transport across goat intestinal mucosa, 78-fold improved mucoadhesion, improved drug dissolution and 4.4-fold enhanced dynamic viscosity. No toxic effects were reported to Caco-2 cells at 0.5% (m/v) concentration of sulfhydryl-modified β-CD for 24 h. The apparent permeability coefficient (P) of SMN was 6.9-fold enhanced on goat intestinal mucosa. Moreover, in-vivo studies confirmed a significantly enhanced oral bioavailability of SMN due to combination with sulfhydryl-modified β-CD. Based on these findings, the sulfhydryl-modified β-CD-silymarin inclusion complex can be a promising technique to enhance the bioavailability of BCS Class IV drugs via enhanced solubility, mucoadhesion, and permeability triple action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122880 | DOI Listing |
Discov Nano
November 2024
Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
Detection of microRNA-196a (miRNA-196a) is crucial in cancer research, enabling early diagnosis and providing guidance for individualized treatment. In this work, we employed a naturally occurring negatively charged nano silk fibroin (NSF) with high mechanical properties, biocompatibility, and conductivity to be encapsulated with a positively charged gold nanoparticles (AuNPs) were used as film-forming materials for electrostatic layer-by-layer self-assembly to modify the working electrode of the screen-printed carbon electrode (SPCE). Under the optimized experimental conditions, the uniformly distributed AuNPs on the surface of the multilayer film modified SPCE (AuNPs/NSF)/SPCE combined with the sulfhydryl-modified capture probe cp-DNA through gold-sulfur bonds.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan. Electronic address:
The current study aimed to generate a sulfhydryl-modified β-cyclodextrin-silymarin complex (sulfhydryl-modified β-CD-SMN complex) and to evaluate the enchantment in solubility, permeability, and bioavailability of a model BCS Class IV drug silymarin (SMN). For this purpose, sulfhydryl-modified β-CD was synthesized by replacing all primary and secondary -OH groups at the β-CD backbone with sulfhydryl groups via a novel microwave-assisted technique. Afterward, sulfhydryl-modified β-CD was complexed with silymarin and characterized by FTIR and H NMR spectroscopy.
View Article and Find Full Text PDFCarbohydr Polym
December 2024
Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Academy of Pharmaceutical Sciences, Shandong Engineering Research Center of New Sustained and Controlled Release Formulations and Drug Targeted Delivery Systems, Jinan 250101, China. Electronic address:
Carbohydr Polym
December 2024
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
Microcarriers for large-scale cell culture have a broader prospect in cell screening compared with the traditional high cost, low efficiency, and cell damaging methods. However, the equal biological affinity to cells has hindered its application. Therefore, based on the antifouling strategy of zwitterionic polymer, we developed a cell-specific microcarrier (CSMC) for shielding non-target cells and capturing mesenchymal stem cells (MSCs), which has characteristics of high biocompatibility, low background noise and high precision.
View Article and Find Full Text PDFMater Horiz
October 2024
Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
Cell condensation, linking the migration and chondrogenic differentiation of MSCs, plays a crucial role in cartilage development. Current cartilage repair strategies are inadequately concerned with this process, leading to a suboptimal quality of regenerated cartilage. Inspired by the "nest flocks" structure of Social Weavers, a degradable heterogeneous microgel assembly (F/S-MA) is developed, which can release SDF-1, to form a "micro-nest group" structure and bond with HAV peptides to promote cell recruitment, condensation and chondrogenic differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!