An ideal drug carrier system should demonstrate optimal payload and release characteristics, thereby ensuring prolonged therapeutic index while minimizing adverse effects. The field of drug delivery has undergone significant advancements, particularly within the last two decades, owing to the revolutionary impact of biomaterials. The use of biomaterials presents significant due to their biocompatibility and biodegradability, which must be addressed in order to achieve effective drug delivery. The properties of the biomaterial and its interface are primarily influenced by their physicochemical attributes, physiological barriers, cellular trafficking, and immunomodulatory effects. By attuning these barriers, regulating the physicochemical properties, and masking the immune system's response, the bio interface can be effectively modulated, leading to the development of innovative supramolecular structures with enhanced effectiveness. With a comprehensive understanding of these technologies, there is a growing demand for repurposing existing drugs for new therapeutic indications within this space. This review aims to provide a substantial body of evidence showcasing the productiveness of biomaterials and their interface in drug delivery, as well as methods for mitigating and modulating barriers and physicochemical properties along with an examination of future prospects in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/znc-2024-0208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!