A tug-of-war between germ cell motility and intercellular bridges controls germline cyst formation in mice.

Curr Biol

Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA. Electronic address:

Published: December 2024

AI Article Synopsis

  • Researchers studied how gametes (reproductive cells) develop in clusters called cysts, which are formed from germ cells connected by intercellular bridges that allow them to share materials.
  • They used advanced live imaging techniques to observe the movement and behavior of these germ cells in their natural environment, revealing how their motility contributes to the formation and breaking of these cysts during embryonic development.
  • The study suggests a balance between cell movement and the stability of intercellular connections determines the size of cysts, with implications for understanding how oocytes (egg cells) are selected and the overall female reproductive system development.

Article Abstract

Gametes in many species develop in cysts-clusters of germ cells formed by incomplete cytokinesis-that remain connected through intercellular bridges (ICBs). These connections enable sharing of cytoplasmic components between germ cells and, in the female germ line, enrich select cells in the cyst to become the oocyte(s). In mice, germline cysts of variable sizes are generated during embryonic development, thought to result from cyst fractures. Studies of fixed samples failed to capture fracture events, and thus, the mechanism remained elusive. Here, we use high-resolution live imaging of germ cells within their native tissue environment to visualize germline cyst dynamics. With this novel approach, we reveal a striking motile phenotype of gonad-resident germ cells and show that this randomly oriented cell-autonomous motile behavior during cyst formation underlies fracture events. Conversely, we show that stabilized ICBs help resist excessive fracturing. Additionally, we find that motility and thus fracture rates gradually decrease during development in a sex-dependent manner, completely ceasing by the end of cyst-forming divisions. These results lead to a model where the opposing activities of developmentally regulated cell motility and stable ICBs give rise to cysts of variable sizes. We corroborate these results by developing a model that uses experimentally measured fracture rates to simulate cyst formation and fracture and show that it can reproduce experimentally measured cyst sizes in both male and female. Understanding how variable cysts form will enable further studies of mammalian oocyte selection and establishment of the ovarian reserve.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.10.062DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652221PMC

Publication Analysis

Top Keywords

germ cells
16
cyst formation
12
cell motility
8
intercellular bridges
8
germline cyst
8
cysts variable
8
variable sizes
8
fracture events
8
fracture rates
8
experimentally measured
8

Similar Publications

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF

The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified.

View Article and Find Full Text PDF

Background: Local hen layers play a crucial role in egg production and the poultry industry. Optimizing their performance, egg quality, and overall health is of paramount importance.

Aim: This research aims to examine the effects of different feed forms on gut bacteria and subsequent effects on productivity, egg quality, and intestinal morphology in indigenous laying hens.

View Article and Find Full Text PDF

Effect of freezing and thawing on ejaculated sperm and subsequent pregnancy and neonatal outcomes in IVF.

Front Endocrinol (Lausanne)

December 2024

Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).

View Article and Find Full Text PDF

Research advances in the construction of stem cell-derived ovarian organoids.

Stem Cell Res Ther

December 2024

Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.

Ovarian organoids are essential in female reproductive medicine, enhancing our understanding of ovarian diseases and improving treatments, which benefits women's health. Constructing ovarian organoids involves two main processes: differentiating induced pluripotent stem cells (iPSCs) into germ and ovarian somatic cells to restore ovarian function and using extracellular matrix (ECM) to create a suitable ovarian microenvironment and scaffold. Although the technology is still in its early stages, future advancements will likely involve integrating high-throughput analysis, 3D-printed scaffolds, and efficient iPSC induction, driving progress in reproductive and regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!