A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bushen Huoxue Yiqi formula alleviates cardiac fibrosis in ischemic heart failure through SIRT1/Notch1 pathway-mediated EndMT. | LitMetric

Bushen Huoxue Yiqi formula alleviates cardiac fibrosis in ischemic heart failure through SIRT1/Notch1 pathway-mediated EndMT.

Phytomedicine

Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No.5, beixiange, Xicheng District, Beijing 100053, China.

Published: December 2024

Background: Cardiac fibrosis plays a crucial role in the development of heart failure (HF) following myocardial infarction (MI). Endothelial-mesenchymal transition (EndMT) is one of the key drivers of cardiac fibrosis and subsequent cardiac dysfunction. The traditional Chinese medicine formula Bushen Huoxue Yiqi Formula (BHYF) is an effective prescription for treating HF, significantly improving cardiac function in patients. However, the underlying mechanisms of BHYF's efficacy remain inadequately understood.

Objective: This study aims to determine whether BHYF ameliorates HF by inhibiting cardiac fibrosis and to elucidate the intrinsic mechanisms involved.

Methods: A post-MI HF model was established by ligating the left anterior descending coronary artery in rats, and human umbilical vein endothelial cells (HUVEC) were stimulated with hypoxia/reoxygenation (H/R) in vitro. Active compounds in BHYF were identified using HPLC. Cardiac function and morphology were assessed using echocardiography, TTC staining, HE staining, Masson's trichrome, and Sirius Red staining. The mechanism of action of BHYF was evaluated using Western blotting, immunohistochemistry, and immunofluorescence.

Results: A total of 98 compounds, including glycosides, phenolic compounds, carboxylic acids, and others, were identified or preliminarily identified. BHYF improved cardiac function and myocardial damage in rats with MI-induced HF and mitigated cardiac fibrosis by inhibiting EndMT. Mechanistically, BHYF treatment inhibited EndMT by modulating the SIRT1/Notch1 pathway, thereby exerting anti-fibrotic effects in the heart.

Conclusion: Targeting EndMT based on the SIRT1/Notch1 pathway, BHYF may represent a novel antifibrotic therapeutic strategy, providing a scientific basis for the development of new cardiovascular drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.156252DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
20
cardiac function
12
cardiac
9
bushen huoxue
8
huoxue yiqi
8
yiqi formula
8
heart failure
8
sirt1/notch1 pathway
8
bhyf
7
fibrosis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!