Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We synthesize single- and multiple-tone waveforms at gigahertz frequencies from arrays of Josephson junctions and demonstrate their quantum-locked operation over a range of experimental input parameters. We first use a lumped-element circuit to synthesize 1 and 2 GHz single-tone waveforms with -71 dBm output power and in-band spurious-free dynamic range (SFDR) of -66 dBc. We then introduce a narrow-band diplexer circuit and synthesize a 1 GHz sinusoid with higher power (-49 dBm) and in-band SFDR of -79 dBc. To demonstrate the spectrally selective power- and phase-programmability of the diplexer circuit, we also synthesize multisine waveforms with total waveform power of -51 dBm. The spectral purity of the reported waveforms is limited by the room-temperature electronics rather than by the quantized pulse-based synthesis technique. This article provides direction for future circuit designs and uncovers the main factors that must be addressed to achieve higher power, higher spectral purity, and improved output power accuracy. The reported results represent significant progress towards a JAWS-based primary RF reference source that synthesizes programmable, quantum-referenced, low-distortion signals at gigahertz frequencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574870 | PMC |
http://dx.doi.org/10.1109/tasc.2019.2932342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!