The diffusivity of hydrogen is an important property of light water nuclear reactor (LWR) fuel cladding. LWR cladding absorbs hydrogen during normal operation, a contributing factor to embrittlement that decreases the lifetime of the fuel. Mass transport of hydrogen is dictated by an Arrhenius behavior typical of solid state diffusion and the associated activation energy is therefore a property relevant to LWR fuel performance. We have used incoherent quasi-elastic neutron scattering (QENS) to directly measure the diffusivity of hydrogen in recrystallized Zircaloy 2 with a hydrogen concentration of . We rely upon the low-Q expansion for long-range diffusion to determine diffusivity as a function of temperature between 572 and 780 K. We find the diffusivity is given by exp (-0.461 eV/kT) [cm/s] below 670 K and by exp (-0.36 eV/kT) [cm/s] above 670 K. Our activation energy below 670 K agrees with the value typically used to assess hydrogen diffusivity in LWR cladding [Kearns, Journal of Nuclear Materials 43 (1972) 330], but is approximately 20% lower above 670 K. The two different activation barriers are attributed to impurity trapping of hydrogen solutes at lower temperature that ceases to influence diffusivity at higher temperature. The application of the Oriani model for diffusion with impurity trapping to our system demonstrates the plausibility of this hypothesis. We believe this mechanism may be responsible for historical discrepancies of measured hydrogen diffusivity in Zr-based alloys. The elastic intensity versus temperature in fixed window scans exhibit inflection points that are in good agreement with the published terminal solid solution solubility limits for hydrogen in Zircaloy 2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574858PMC
http://dx.doi.org/10.1016/j.jnucmat.2019.02.045DOI Listing

Publication Analysis

Top Keywords

hydrogen diffusivity
12
hydrogen
10
diffusivity
8
solubility limits
8
incoherent quasi-elastic
8
quasi-elastic neutron
8
neutron scattering
8
diffusivity hydrogen
8
lwr fuel
8
lwr cladding
8

Similar Publications

Research on leakage and diffusion behavior of hydrogen doped natural gas in integrated pipeline corridors based on data drive.

Sci Rep

January 2025

Northwest Sichuan Gas District of Southwest Oil and Gasfield Company, Jiangyou, 621700, China.

With the wide application of hydrogen-doped natural gas (HBNG) in end users, laying pipelines in urban, comprehensive pipe corridors has become increasingly common. However, the leakage and diffusion of hydrogen-doped natural gas in confined or semi-confined spaces (e.g.

View Article and Find Full Text PDF

Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity.

View Article and Find Full Text PDF

Intranasal Administrations of AP39-Loaded Liposomes Selectively Deliver H2S to Neuronal Mitochondria to Protect Neonatal Hypoxia-Ischemia by Targeting ERK1/2 and Caspase-1.

ACS Biomater Sci Eng

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.

Mitochondrial dysfunction contributes to the pathology of hypoxia-ischemia (HI) brain damage by aberrant production of ROS. Hydrogen sulfide (HS) has been demonstrated to exert neuroprotective effects through antioxidant mechanisms. However, the diffusion of HS is not specifically targeted and may even be systemically toxic.

View Article and Find Full Text PDF

Hydrogen, a sustainable and environmentally friendly fuel, can be obtained through the ethanol steam reforming (ESR) process. The most promising catalysts for this process are those based on non-noble metals such as cobalt. The activity, selectivity, and stability of these catalysts strongly depend on the presence of alkali dopants.

View Article and Find Full Text PDF

Tuning Fluorination of Carbon Molecular Sieve Membranes with Enhanced Reverse-Selective Hydrogen Separation From Helium.

Small

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Liaoning, Dalian, 116024, China.

Membrane technology has been explored for separating helium from hydrogen in natural gas reservoirs, a process that remains extremely challenging due to the sub-Ångstrom size difference between H and He molecules. Reverse-selective H/He separation membranes offer multiple advantages over conventional helium-selective membranes, which, however, suffer from low H/He selectivity. To address this hurdle, a novel approach is proposed to tune the ultra-micropores of carbon molecular sieves (CMS) membranes through fluorination of the polymer precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!