Azaspirooctane-carboxylates as Novel Activators/Modulators of M4 for the Treatment of Alzheimer's Disease and Parkinson's Disease.

ACS Med Chem Lett

Arrival Discovery, LLC, San Diego, California 92128, United States.

Published: November 2024

AI Article Synopsis

Article Abstract

Novel azaspirooctane-carboxylates are described for potential treatment of Alzheimer's disease and Parkinson's disease, among other conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571014PMC
http://dx.doi.org/10.1021/acsmedchemlett.4c00512DOI Listing

Publication Analysis

Top Keywords

treatment alzheimer's
8
alzheimer's disease
8
disease parkinson's
8
parkinson's disease
8
azaspirooctane-carboxylates novel
4
novel activators/modulators
4
activators/modulators treatment
4
disease
4
disease novel
4
novel azaspirooctane-carboxylates
4

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.

View Article and Find Full Text PDF

Schizophrenia is a chronic and severe mental disorder. It is currently treated with antipsychotic drugs (APD). However, APD's work only in a limited number of patients and may have cognition impairing side effects.

View Article and Find Full Text PDF

Recent progress in CRISPR-Cas-system for neurological disorders.

Prog Mol Biol Transl Sci

January 2025

Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India. Electronic address:

Different neurological diseases including, Parkinson's, Alzheimer's, and Huntington's diseases extant momentous global disease burdens, affecting millions of lives for imposing a heavy disease burden on the healthcare systems. Despite various treatment strategies aimed at alleviating symptoms, treatments remain elusive and ineffective due to the disease's complexity. However, recent advancements in gene therapy via the CRISPR-Cas system offer ground-breaking and targeted treatment options.

View Article and Find Full Text PDF

Characterizing Oxidative Stress induced by Aβ Oligomers and the Protective Role of Carnosine in Primary Mixed Glia Cultures.

Free Radic Biol Med

January 2025

Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!