Cysteine (Cys) detection is recognized as an essential element in this investigation due to the critical function of Cys in several physiological processes in living organisms. A new NIR fluorescent probe SNC-Cys has been synthesized by incorporating a five-membered malononitrile derivatized ring as an electron withdrawing group, and a methacryloyl group detection moiety for cysteine. After adding Cys, SNC-Cys shows an emission of 654 nm and further works as a "Turn-on" probe via ICT photomechanism. SNC-Cys has high sensitivity and selectivity for Cys (LOD=0.46 μM) and can discriminate it from other closely related amino acids, molecules with structural similarity, and in some cases very close functional group likeness. Thus, these results allow the effective imaging of Cys in living A549 cells which indicates good cell permeability and high applicability in live cell imaging. This study anticipates that SNC-Cys could be an aid in the detection of Cys-relevant diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402840 | DOI Listing |
Bioorg Chem
January 2025
Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:
The assessment of early atherosclerosis (AS) via fluorescence imaging is crucial for advancing early diagnosis research. Abnormal inflammation biomarkers, including hypochlorous acid (HClO) and viscosity within mitochondria, have been closely linked to the pathogenesis of AS. However, current fluorescent probes predominantly rely on unimodal imaging that targets a single biomarker and lacks mitochondrial specificity, which can result in potential false signal readouts due to the complex intracellular environment.
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.
Cancer is one of the leading causes of death worldwide, posing a significant threat to human health. Although immunotherapy has shown promise in cancer treatment, its efficacy is often compromised by tumor immune evasion, which hinders treatment outcomes. Therefore, combining immunotherapy with other therapeutic approaches to enhance its effectiveness has become an increasingly accepted strategy in clinical practice.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.
The unique insertion capability of Ag into cytosine-cytosine (C-Ag-C) mismatch-base pairs enables precise fabrication of DNA-trapped silver nanoclusters (DNA-AgNCs) through varying the DNA sequences, thereby offering precise assembly of DNA-AgNCs and demonstrating great fluorescence applications. However, most of the DNA-AgNC-based fluorescence sensors have a single output signal. Herein, we developed a dimerized DNA-AgNC system through C-Ag-C connection at the 3'-end of a designed DNA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
The large recruitment of tumor-associated macrophages and low exposure of tumor-associated antigens in tumor microenvironment have severely suppress the efficacy of anti-tumor immunotherapy. Herein, biosynthesized magnetosome (Mag) from bacteria was loaded with photothermal/photodynamic agent/near infrared (NIR) fluorescence dye (IR780) and further modified with lipid-PEG-c(RGDyK) through biomembrane, forming Mag for fluorescence imaging, magnetic resonance imaging, immunotherapy and photodynamic/photothermal therapy. After intravenous injection into B16F10 tumor-bearing mice, Mag could efficiently accumulate in tumor tissues based on near infrared (NIR) fluorescence and magnetic resonance dual-modality imaging, and repolarize tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype, significantly improving the effect of tumor immunotherapy.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!