Summary: The inference of kinase activity from phosphoproteomics data can point to causal mechanisms driving signalling processes and potential drug targets. Identifying the kinases whose change in activity explains the observed phosphorylation profiles, however, remains challenging, and constrained by the manually curated knowledge of kinase-substrate associations. Recently, experimentally determined substrate sequence specificities of human kinases have become available, but robust methods to exploit this new data for kinase activity inference are still missing. We present PhosX, a method to estimate differential kinase activity from phosphoproteomics data that combines state-of-the-art statistics in enrichment analysis with kinases' substrate sequence specificity information. Using a large phosphoproteomics dataset with known differentially regulated kinases we show that our method identifies upregulated and downregulated kinases by only relying on the input phosphopeptides' sequences and intensity changes. We find that PhosX outperforms the currently available approach for the same task, and performs better or similarly to state-of-the-art methods that rely on previously known kinase-substrate associations. We therefore recommend its use for data-driven kinase activity inference.
Availability And Implementation: PhosX is implemented in Python, open-source under the Apache-2.0 licence, and distributed on the Python Package Index. The code is available on GitHub (https://github.com/alussana/phosx).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630834 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae697 | DOI Listing |
NMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFCirc Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFRasopathies, including Noonan Syndrome (NS) and Neurofibromatosis type 1 (NF1), are developmental disorders caused by germline mutations in genes of the RAS/mitogen-activated protein kinase pathway (RAS-MAPK). This study investigates irritability, a highly prevalent transdiagnostic construct, in children with Rasopathies and the impact of Rasopathy status on the associations between irritability, emotional dysregulation-related disorders, and social skills impairments. The sample comprise 174 children aged 4-17 (age mean = 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!