This study explored the structural mechanisms governing the binding of opabactin (OP) analogues - to abscisic acid (ABA) receptors by employing a combination of micro-scale thermophoresis (MST), phosphatase activity inhibition assays, and molecular dynamics simulations. The compounds - selectively activated PYR1, PYL2, and PYL6, while exhibiting minimal activity against PYL10, thus identifying them as selective ABA receptor agonists. Additionally, these analogues exerted a significant inhibitory effect on the phosphatase HAB1 upon binding to the receptors. The molecular dynamics simulations further elucidated the detailed binding interactions between various OP analogues and the ABA receptor PYR1, highlighting their role in inducing conformational changes within the receptor. Specifically, the study focused on the facilitation of the closure of the Gate and CL1 loops and the fine-tuning of the Latch loop to enhance the plasticity of the binding pocket, thereby influencing receptor-ligand interactions. The investigation emphasized the critical role of conserved water molecules in stabilizing the ligand-PYLs-PP2Cs complexes. Furthermore, free energy decomposition calculations demonstrated that the ligand's affinity was significantly affected by its ability to establish polar contacts between the polar groups within the ligand tail and the residues at the base of the binding pocket. This research lays a robust foundation for the development of novel ABA functional analogues with improved activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c07265 | DOI Listing |
Front Microbiol
December 2024
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain.
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875, Campinas, São Paulo, Brazil.
Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.
KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in via the method of genetic transformation.
View Article and Find Full Text PDFMetabol Open
December 2024
Department of Physiology, University of Medical Sciences, Ondo City, Nigeria.
Diabetes mellitus, a chronic metabolic disorder, has significant global health implications, particularly due to its neurological complications, such as diabetic neuropathy. This condition increases the risk of neurodegenerative diseases by affecting peripheral nerves and cognition. , known for its neuroprotective properties, shows promise as a therapeutic option for addressing these complications.
View Article and Find Full Text PDFDev Cell
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China. Electronic address:
In plants, small peptides are important players in the plant stress response, yet their function in plant antiviral responses remains poorly understood. Here, we identify that the plant small peptide, CLAVATA3/ESR-RELATED 7 (CLE7), enhances plant resistance to Chinese wheat mosaic virus infection in Nicotiana (N.) benthamiana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!