AI Article Synopsis

  • The study examined how opabactin analogues bind to abscisic acid receptors using techniques like micro-scale thermophoresis and molecular dynamics simulations.
  • The analogues selectively activated certain ABA receptors while inhibiting the phosphatase HAB1, showcasing their role as selective receptor agonists.
  • Molecular dynamics simulations clarified the binding interactions, emphasizing the importance of specific receptor loops and conserved water molecules in stabilizing the ligand-receptor complexes.

Article Abstract

This study explored the structural mechanisms governing the binding of opabactin (OP) analogues - to abscisic acid (ABA) receptors by employing a combination of micro-scale thermophoresis (MST), phosphatase activity inhibition assays, and molecular dynamics simulations. The compounds - selectively activated PYR1, PYL2, and PYL6, while exhibiting minimal activity against PYL10, thus identifying them as selective ABA receptor agonists. Additionally, these analogues exerted a significant inhibitory effect on the phosphatase HAB1 upon binding to the receptors. The molecular dynamics simulations further elucidated the detailed binding interactions between various OP analogues and the ABA receptor PYR1, highlighting their role in inducing conformational changes within the receptor. Specifically, the study focused on the facilitation of the closure of the Gate and CL1 loops and the fine-tuning of the Latch loop to enhance the plasticity of the binding pocket, thereby influencing receptor-ligand interactions. The investigation emphasized the critical role of conserved water molecules in stabilizing the ligand-PYLs-PP2Cs complexes. Furthermore, free energy decomposition calculations demonstrated that the ligand's affinity was significantly affected by its ability to establish polar contacts between the polar groups within the ligand tail and the residues at the base of the binding pocket. This research lays a robust foundation for the development of novel ABA functional analogues with improved activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c07265DOI Listing

Publication Analysis

Top Keywords

aba receptors
8
opabactin analogues
8
molecular dynamics
8
dynamics simulations
8
aba receptor
8
binding pocket
8
aba
5
analogues
5
binding
5
mechanistic approach
4

Similar Publications

Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules.

View Article and Find Full Text PDF

Regulation of abscisic acid receptor mRNA stability: involvement of microRNA5628 in PYL6 transcript decay.

Plant Physiol

December 2024

Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875, Campinas, São Paulo, Brazil.

Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression.

View Article and Find Full Text PDF

Identification of osmotic stress resistance mediated by in apple.

Front Plant Sci

December 2024

Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in via the method of genetic transformation.

View Article and Find Full Text PDF

Diabetes mellitus, a chronic metabolic disorder, has significant global health implications, particularly due to its neurological complications, such as diabetic neuropathy. This condition increases the risk of neurodegenerative diseases by affecting peripheral nerves and cognition. , known for its neuroprotective properties, shows promise as a therapeutic option for addressing these complications.

View Article and Find Full Text PDF

The plant signal peptide CLE7 induces plant defense response against viral infection in Nicotiana benthamiana.

Dev Cell

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China. Electronic address:

In plants, small peptides are important players in the plant stress response, yet their function in plant antiviral responses remains poorly understood. Here, we identify that the plant small peptide, CLAVATA3/ESR-RELATED 7 (CLE7), enhances plant resistance to Chinese wheat mosaic virus infection in Nicotiana (N.) benthamiana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!