Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies (Nbs) targeting mouse and human programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Both PD-1- and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared with IL-12 alone. The antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 Nb. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymthe.2024.11.027 | DOI Listing |
J Immunother Cancer
January 2025
Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee, USA.
Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.
View Article and Find Full Text PDFEur J Surg Oncol
January 2025
Institute of Oncology Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Slovenia. Electronic address:
Introduction: In the treatment of cancer, immunomodulatory approaches are developed to support the organism in fighting cancer or to enhance the immunomodulatory effects of local ablative techniques. To this end, we conducted an interventional, open-label, single-arm Phase I trial to evaluate the safety and tolerability of intratumoral phIL12 plasmid DNA gene electrotransfer as primary objectives.
Methods: The study was dose-escalating with 3 consecutive cohorts of 3 patients per phIL12 dose level (0.
Clin Exp Med
January 2025
Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.
Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).
Cancer Immunol Res
January 2025
The Ohio State University, Columbus, OH, United States.
Interleukin-12 (IL-12) is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL 12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T BET (Tbx21), the cytotoxic ligands TRAIL (TNFSF10) and Fas ligand (FASLG) and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!