We adapted the SWAP molecular dynamics algorithm for use in lattice Ising spin models. We dressed the spins with a randomly distributed length and we alternated long-range spin exchanges with conventional single spin flip Monte Carlo updates, both accepted with a stochastic rule which respects detailed balance. We show that this algorithm, when applied to the bidimensional Edwards-Anderson model, speeds up significantly the relaxation at low temperatures and manages to find ground states with high efficiency and little computational cost. The exploration of spin models should help in understanding why SWAP accelerates the evolution of particle systems and sheds light on relations between dynamics and free-energy landscapes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.L043301DOI Listing

Publication Analysis

Top Keywords

spin models
12
algorithm lattice
8
spin
5
swap algorithm
4
lattice spin
4
models adapted
4
adapted swap
4
swap molecular
4
molecular dynamics
4
dynamics algorithm
4

Similar Publications

Intriguing magnetic and electronic behaviors in La and Ru doped Sr2IrO4.

J Phys Condens Matter

December 2024

Departmet of Physics(MMV), Banaras Hindu University, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.

We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (Sr1-x Lax)2Ir1-xRuxO4 (x= 0.05, 0.15).

View Article and Find Full Text PDF

Ferro-Valleytricity with In-Plane Spin Magnetization.

Nano Lett

December 2024

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.

Ferro-valleytricity that manifests spin-orbit coupling (SOC)-induced spontaneous valley polarization is generally considered to occur in two-dimensional (2D) materials with out-of-plane spin magnetization. Here, we propose a mechanism to realize SOC-induced valley polarization and ferro-valleytricity in 2D materials with in-plane spin magnetization, wherein the physics correlates to non-collinear magnetism in triangular lattice. Our model analysis provides comprehensive ingredients that allow for ferro-valleytricity with in-plane spin magnetization, revealing that mirror symmetry favors remarkable valley polarization and time-reversal-mirror joint symmetry should be excluded.

View Article and Find Full Text PDF

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Hypoxic tumors are radioresistant stemming from the fact that oxygen promotes reactive oxygen species (ROS) propagation after water radiolysis and stabilizes irradiation-induced DNA damage. Therefore, an attractive strategy to radiosensitize solid tumors is to increase tumor oxygenation at the time of irradiation, ideally above a partial pressure of 10 mm-Hg at which full radiosensitization can be reached. Historically, the many attempts to increase vascular O delivery have had limited efficacy, but mathematical models predicted that inhibiting cancer cell respiration would be more effective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!