The preparation of high-performance electrode materials from metallurgical solid waste is an effective strategy to address current energy and environmental challenges. This study utilizes a mixed acid leaching and ultrasound-assisted precipitation process to extract valuable metallic iron from titanium-extraction tailings (TET) to produce high-purity nano-FePO electrode material precursors with unique crystal structures. A leaching efficiency of 95.2% for Fe was attained by using the optimized process parameters, which included a mixed acid concentration of 4 mol/L, a liquid-to-solid ratio of 4:1, and a leaching temperature of 70 °C for 1 h. The optimal precipitation conditions were a pH of 2.0, a temperature of 60 °C, an aging time of 30 min, and a stirring speed of 600 rpm, resulting in FePO purity up to 99.6% and fine particle size. Thermodynamic calculations, combined with various characterizations, elucidated the leaching and precipitation mechanisms, highlighting the synergistic effect of phosphoric acid and hydrochloric acid in enhancing the leaching reaction. The thermogravimetric analysis indicated that the decomposition of residual ammonium chloride impurities requires calcination above 360 °C. This research not only provides new insights into the high-value, clean utilization of metallurgical solid waste but also supports sustainable resource recovery and environmental protection by transforming waste into valuable products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04229 | DOI Listing |
Inorg Chem
December 2024
School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China.
The preparation of high-performance electrode materials from metallurgical solid waste is an effective strategy to address current energy and environmental challenges. This study utilizes a mixed acid leaching and ultrasound-assisted precipitation process to extract valuable metallic iron from titanium-extraction tailings (TET) to produce high-purity nano-FePO electrode material precursors with unique crystal structures. A leaching efficiency of 95.
View Article and Find Full Text PDFWaste Manag
October 2003
Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul Warynskiego 1, 00-645 Warsaw, Poland.
Copper ore tailings were tested for the stability of titanium submitted to water leaching in three different reactor systems (agitated vessel, bioreactor and percolated fixed-bed column). For each of these systems, titanium extraction did not exceed 1% of the available metal. Biomass removed from ore residue adsorbed a small part of the titanium with sorption capacities below 20-30 mg g(-1), but most of this biomass was sequestered in the ore residue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!