This study examined the potential of duckweed powder (DWP) on in vitro fermentation characteristics, nutrient degradability, microbial change, and methane (CH) production using in vitrostudy technique. This investigation used a 2 × 6 factorial arrangement in a completely randomized design (CRD) by different roughage-to-concentrate (R: C) ratios of 60:40 and 40:60 combined with DWP supplementation levels at 0, 2, 4, 6, 8, and 10% of the total dry matter (DM) substrate, respectively. There was an interaction effect by R: C ratios combined with DWP supplementations that changed gas production rate, pH value (4 h; h), volatile fatty acid (VFA) (8 h), in vitro dry matter degradability (IVDMD) at 12 h, and concentration of ammonium nitrogen (NH-N) (p < 0.05). Furthermore, the R: C ratio (40:60) significantly decreased CH production (4 and 8 h), pH (8 h), and Ruminococcus albus (8 h) (p < 0.05), while it significantly increased total VFA (8 h), and nutrient degradability (p < 0.05). DWP 4% significantly increased to the highest of gas production, improved nutrient degradability (IVDMD at 24 h and in vitro organic matter degradability; IVOMD at 12 h), whereas significantly decreased Methanobacteriales (8 h) and CH production. DWP 4% has potential as a ruminant feed additive for reducing Methanobacteriales and CH emission and enhancing rumen fermentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577031PMC
http://dx.doi.org/10.1038/s41598-024-78475-3DOI Listing

Publication Analysis

Top Keywords

fermentation characteristics
8
characteristics nutrient
8
nutrient degradability
8
degradability microbial
8
combined dwp
8
dry matter
8
potential wolffia
4
wolffia globosa
4
globosa powder
4
powder supplementation
4

Similar Publications

The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.

View Article and Find Full Text PDF

Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence.

Food Chem

December 2024

College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:

Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S.

View Article and Find Full Text PDF

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Paper mulberry () is a high-quality silage protein feed material that can help address feed shortages and support livestock development. Although some studies have investigated the relationships between microbial communities and silage quality, these relationships and the underlying community assembly processes remain complex, requiring further research to clarify them. Additionally, limited research has explored the relationship between microbial community fermentation functions and silage quality.

View Article and Find Full Text PDF

Differential effects of Lactococcus starter cultures on Cheddar cheese: Insights from texture, electronic sensory, and metabolomics analyses.

Food Chem

December 2024

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China. Electronic address:

Cheese-associated microbiota and their interactions are crucial in determining the properties of cheese. This study aimed to compare the effects of different starter cultures on Cheddar cheese production using texture analysis, electronic sensory evaluation, and both volatile and non-volatile metabolomics. Specifically, we examined Lactococcus lactis BL19 and Lactococcus cremoris LC99, both individually and in combination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!