Tribenuron-methyl (TBM) is among the herbicides that are widely used for controlling broadleaf weeds in wheat fields in Iran due to its low mammalian toxicity and environmental risk, use at low doses, the broad spectrum of weed control, and low price compared to other herbicides. However, wheat farmers' repeated application and dissatisfaction with the optimal and effective control of the TBM herbicide have led to investigating broadleaf weed resistance in Iranian wheat fields. For this purpose, through a national call in 2018, a total of 240 broadleaf weed populations belonging to 13 species and 7 plant families were collected from 153 wheat fields in 72 counties across 14 provinces suspected to be resistant to the TBM herbicide. Then, a screening test was conducted in a completely randomized design with 5 replications of each biotype using the recommended dose of 25 g a.i. ha of TBM in the greenhouse. Overall, the results indicated that 124 (51.7%) of the screened populations were resisted to TBM. Specifically, 44 populations (81%) of Sinapis arvensis L., 18 populations (45%) of Malva neglecta Wallr., 25 populations (45%) of Silybum marianum (L.) Gaertn, 2 populations (66.6%) of Ammi majus L., 1 population (50%) of Rapistrum rugosum L., 3 populations (21%) of Descurainia Sophia (L.) Webb ex Prantl, 9 populations (36%) of Vaccaria hispanica Mill., 8 populations (48%) of Galium aparine L., 9 populations (75%) of Melilotus indicus L. According to the Adkins and Maas evaluation, 4 populations (100%) of Raphanus raphanistrum L. were classified as resistant to TBM. This study is the first comprehensive investigation of broadleaf weed resistance to TBM across Iranian wheat fields, providing crucial insights for future herbicide management strategies. Given the high incidence of resistance, continued use of TBM in Iranian wheat fields may lead to increased yield loss and environmental pollution. Additionally, it is necessary to investigate cross-resistance in resistant populations to other ALS-inhibiting herbicides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576891 | PMC |
http://dx.doi.org/10.1038/s41598-024-75308-1 | DOI Listing |
Sci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China.
Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.
Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium. Electronic address:
Contamination of wheat by the mycotoxin Deoxynivalenol (DON), produced by Fusarium fungi, poses significant challenges to the quality of crop yield and food safety. Visible and near-infrared (vis-NIR) spectroscopy has emerged as a promising, non-destructive, and efficient tool for detecting mycotoxins in cereal crops and foods. This study aims to utilize vis-NIR spectroscopy, coupled with a feature selection technique and machine learning modelling, to predict and classify DON contamination in wheat kernels and flour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!