Although not the only greenhouse gas, CO is the poster child. Unsurprisingly, therefore, there is global interest across industrial and academic research in its removal and subsequent valorisation, including to methanol and its surrogates. Although difficult to study, the heterogenous pnictogens represent one important category of catalytic materials for these conversions; their high crustal abundance and low cost offers advantages in terms of sustainability. Here, Zintl clusters based on these elements are studied as homogenous atom-precise models in CO reduction. A family of group 13 functionalized pnictogen clusters with the general formula [(RE)Pn] (E = B, Al, In; Pn = P, As) is synthesized and their catalytic competency in the reduction of CO probed. Trends in both turnover numbers and frequencies are compared across this series, and [(iBuAl)P] found to be very high-performing and recyclable. Electronic structures across the series are compared using density functional theory to provide mechanistic insights.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576849PMC
http://dx.doi.org/10.1038/s41467-024-54277-zDOI Listing

Publication Analysis

Top Keywords

transforming carbon
4
carbon dioxide
4
dioxide methanol
4
methanol surrogate
4
surrogate modular
4
modular transition
4
transition metal-free
4
metal-free zintl
4
zintl ions
4
ions greenhouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!