Room temperature quantitative liquid concentration device and application to interleukins analysis in a B-cell culture medium.

Anal Sci

Department of Dermatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

Published: November 2024

In biological analysis and medical diagnosis, there is an increasing demand for improving the lower detection limit without deteriorating the quantitativity; however, it is usually challenging. In this study, we utilized a cyclone flow device and established a liquid concentration method. An air cyclone flow induced a liquid cyclone flow in the concentration devices and enhanced the air/liquid interface area, which allowed an effective concentration of liquid from mL to mL at room temperature. The heating temperature and actual temperature inside the liquid were investigated to know the cooling effect of evaporation. The collection efficiency of larger than 98% was confirmed with a standard solution. Finally, the analytical procedure to realize a quantitative concentration was established, and the concentration and quantification of interleukins (IL-8, IL-17, and IL-23) from the supernatant of the B-cell culture medium was demonstrated. The B-cell was stimulated with CD40L, and the supernatant was concentrated 27 times at maximum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s44211-024-00688-3DOI Listing

Publication Analysis

Top Keywords

cyclone flow
12
room temperature
8
liquid concentration
8
b-cell culture
8
culture medium
8
concentration
6
liquid
5
temperature quantitative
4
quantitative liquid
4
concentration device
4

Similar Publications

As natural resources continue to be exploited, dense medium cyclones (DMCs) are increasingly utilized for the preconcentration of low-grade ores to meet the demands for higher feed grade, increased processing capacity, and reduced energy consumption. However, determining the optimal fineness of ferrosilicon remains ambiguous for different types of ores and is often described as more of an art than a science. This paper investigates the subtle effects of ferrosilicon fineness on flow field characteristics, medium classification, and the ore separation process using a validated numerical approach, which integrates a two-fluid model, a turbulence dispersion model, and a discrete phase model.

View Article and Find Full Text PDF

Development and validation of a quantification method for direct oral anticoagulants from capillary blood using volumetric absorptive microsampling and online SPE-LC-MS.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany. Electronic address:

The number of prescriptions for new direct oral anticoagulants (DOACs) apixaban, edoxaban, rivaroxaban and dabigatran has increased exponentially in recent years, increasingly replacing the old gold standard, vitamin-K-antagonists. Due to their wide therapeutic range, therapeutic drug monitoring (TDM) is not required, although it has been proven that this could significantly reduce side effects. In order to develop a cost-efficient and simple method for the simultaneous detection of the DOACs and phenprocoumon, a new technology for sample preparation from capillary blood in the ambulant sector named VAMS® was integrated and an LC-MS detector with on-line solid phase extraction (SPE) applying a Turboflow HTLC Cyclone 1.

View Article and Find Full Text PDF

In biological analysis and medical diagnosis, there is an increasing demand for improving the lower detection limit without deteriorating the quantitativity; however, it is usually challenging. In this study, we utilized a cyclone flow device and established a liquid concentration method. An air cyclone flow induced a liquid cyclone flow in the concentration devices and enhanced the air/liquid interface area, which allowed an effective concentration of liquid from mL to mL at room temperature.

View Article and Find Full Text PDF

Three-layer circulation in the world deepest hadal trench.

Nat Commun

October 2024

Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.

Article Synopsis
  • The Challenger Deep is the deepest known trench in the ocean, but data collection at these extreme depths is difficult, leading to unclear understandings of ocean circulation there.
  • Using advanced current meter technology, researchers identified a three-layer circulation system in the Challenger Deep, featuring westward flow, cyclonic, and anticyclonic patterns.
  • The study reveals seasonal changes in flow direction and highlights the importance of local geography and turbulent mixing in shaping these deep-sea currents.
View Article and Find Full Text PDF

Global atmospheric state analysis using objective Gaussian probability density functions.

Sci Rep

September 2024

Meteorological Research Institute, Japan Meteorological Agency, Nagamine 1-1, Tsukuba, Ibaraki, Japan.

Atmospheric state analysis is a difficult scientific problem due to the chaotic nature of the atmosphere. Data assimilation is a framework for generating an accurate state analysis of a physical system using probability density functions (PDFs) describing uncertainty of information on the state of the physical system. However, since PDFs cannot be deduced theoretically, those used in data assimilation of atmospheric state analysis are based on empirical tunings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!