High-performing zeolite materials for carbon dioxide capture are promising for applications such as flue gas CO capture. Potassium carbonate-loaded zeolites can offer a plethora of benefits. In this work, for the first time, zeolite-Y impregnated with KCO was studied as a gas adsorbent (CO, CH, and N) and characterized using TGA (thermogravimetric analyzer), XRD, BET, FTIR, FETEM (Field-Emission Transmission Electron Microscope), and XPS. The effect of carbonate loading, temperature, and pressure was particularly targeted and assessed. Accordingly, for a variation in KCO loading from 5 to 15 wt.%, the CO adsorption capacity reduced from 3.61 to 1.73 mmol g in the synthesized adsorbents. Among all the cases, KYZC10 exhibited very good cyclic adsorption-desorption performance and thermal stability. Further equilibrium modeling studies indicate that the stable and optimally KCO-loaded adsorbent (KYZC10) demonstrates effective adsorption isotherm behavior, making it suitable for different temperature variation processes in commercial carbon dioxide capture applications. The KYZC10 adsorbent's stable performance at varying temperatures contributes to its enhanced economic feasibility. This study also used the ideal adsorbed solution theory (IAST) to predict CO selectivity over other gases (CH and N).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35493-yDOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
dioxide capture
8
selectivity adsorption
4
adsorption performance
4
performance kco-modified
4
kco-modified zeolite
4
zeolite temperature-dependent
4
temperature-dependent study
4
study high-performing
4
high-performing zeolite
4

Similar Publications

Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H) as electron donor into acetate. As the main factor limiting acetogenesis is often H, insights into the H consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H consumption rates at a range of different initial H concentrations were measured for three different acetogens.

View Article and Find Full Text PDF

Feasibility and safety of ultra-low volume ventilation (≤ 3 ml/kg) combined with extra corporeal carbon dioxide removal (ECCOR) in acute respiratory failure patients.

Crit Care

December 2024

Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, PhyMedExp, INSERM U1046, CNRS UMR, University of Montpellier, 9214, Montpellier Cedex 5, France.

Background: Ultra-protective ventilation is the combination of low airway pressures and tidal volume (Vt) combined with extra corporeal carbon dioxide removal (ECCOR). A recent large study showed no benefit of ultra-protective ventilation compared to standard ventilation in ARDS (Acute Respiratory Distress Syndrome) patients. However, the reduction in Vt failed to achieve the objective of less than or equal to 3 ml/kg predicted body weight (PBW).

View Article and Find Full Text PDF

The surface of the eye is constantly exposed to the external environment and is affected by atmospheric conditions and air pollution, and dry eye is a typical ocular surface disease. The aim of this study is to determine whether there are seasonal differences in the number of dry eye operations in Japan and to investigate whether meteorological conditions and air pollutants are related to. The operations were examined using the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) database from fiscal years 2019 to 2021.

View Article and Find Full Text PDF

Air pollution monitoring and modeling are the most important focus of climate and environment decision-making organizations. The development of new methods for air quality prediction is one of the best strategies for understanding weather contamination. In this research, different air quality parameters were forecasted, including Carbon Monoxide (CO), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO), Ozone (O), Sulphur Dioxide (SO), Fine Particles Matter (PM), Coarse Particles Matter (PM), and Ammonia (NH).

View Article and Find Full Text PDF

Background Neonatal vascular air embolism is a rare but often fatal condition. The literature comprises mostly case reports and a few dated systematic reviews. Our objective was to review all case reports of neonatal vascular air embolism to date, and provide up-to-date information about patient characteristics, clinical presentations, outcomes, pathogenesis, diagnosis, prevention, treatment and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!