A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Approach Based on Integrating Radiomics, Bone Morphometry and Hounsfield Unit-Derived From Routine Chest CT for Bone Mineral Density Assessment. | LitMetric

Rationale And Objectives: The purpose of this study is the feasibility of using radiomics features, bone morphometry features (BM), and Hounsfield unit (HU) values obtained from routine chest computed tomography (CT) for assessing bone mineral density (BMD) status.

Materials And Methods: This retrospective study analyzed 120 patients who underwent routine chest CT and dual-energy X-ray absorptiometry examinations within a month. Whole thoracic vertebral bodies from routine chest CT images were segmented using the GrowCut semi-automatic segmentation method, and radiomics features, BM features, and HU values were extracted. To assess the intra- and inter-observer variability of segmentation, the Dice similarity coefficient (DSC) was utilized. Feature selection was carried out using the intra-class correlation coefficient and the Boruta algorithm. Six machine learning classification models were employed for classification in a three-class manner. The models' performance was evaluated using the area under the receiver operator characteristics curve (AUC). Other evaluation parameters of the models were calculated, including overall accuracy, precision, and sensitivity.

Results: The DSC values showed high similarity by achieving 0.907 ± 0.034 and 0.887 ± 0.048 for intra- and inter-observer segmentation agreement, respectively. After a two-stepwise feature selection, 21 radiomics features were selected. Different combinations of these radiomics features with five BM features and HU values were applied to six classification models for evaluating BMD. The multilayer perceptron (MLP) model based on integration of radiomics features and BM features in a three-class classification approach achieved higher performance compared to other models with an AUC of 0.981 (95% confidence interval (CI): 0.937-0.997) in normal BMD class, an AUC of 0.896 (95% CI: 0.826-0.944) in osteopenia class, and an AUC of 0.927 (95% CI: 0.866-0.967) in osteoporosis class.

Conclusion: Using the MLP classification model based on a combination of radiomics features and BM features in a three-class classification approach can effectively distinguish different BMD conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.10.049DOI Listing

Publication Analysis

Top Keywords

radiomics features
24
routine chest
16
features features
16
features
11
bone morphometry
8
bone mineral
8
mineral density
8
features values
8
intra- inter-observer
8
feature selection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!