A novel gellan-based nanoemulgel delivery system for co-encapsulation and in vitro digestion of hydrophilic/hydrophobic nutraceuticals.

Carbohydr Polym

Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Published: January 2025

Preventive healthcare strategies are gaining attention over traditional approach of treating and managing diseases. The use of food hydrocolloids has garnered interest in developing innovative food formulations promoting healthy eating habits. Among emerging carrier systems, nanoemulgel holds significant potential with its ability to deliver hydrophilic and lipophilic nutraceuticals through a combination of nanoemulsion and hydrogel technology. For the first time, this study utilized gellan as an emulsifier and gelling agent to develop a novel nanoemulgel functional food system. Initially, a nanoemulsion composed of gellan and clove oil was prepared, having an average size of 40.10 ± 9.42 nm, which was stable under different physiological conditions. Further, nanoemulsion was combined with gellan hydrogel fabricated using ʟ-Glutamic acid as bio-linker to formulate nanoemulgel that was characterized thoroughly. We employed this system to co-encapsulate hydrophobic naringenin and hydrophilic vitamin B. Additionally, encapsulation efficiency and release rate studies revealed high stability of bioactive at acidic pH. Moreover, release mechanism followed Korsmeyer-Peppas model and zero-order kinetics. During simulated in vitro digestion studies, site-directed release of nutraceuticals was observed. Therefore, present study represents a significant effort in developing novel functional food systems that aid in disease prevention and maintaining healthy lifestyle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122855DOI Listing

Publication Analysis

Top Keywords

vitro digestion
8
functional food
8
novel gellan-based
4
nanoemulgel
4
gellan-based nanoemulgel
4
nanoemulgel delivery
4
delivery system
4
system co-encapsulation
4
co-encapsulation vitro
4
digestion hydrophilic/hydrophobic
4

Similar Publications

The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.

View Article and Find Full Text PDF

Background: Fleas are insect vectors that transmit several Gram-negative bacterial pathogens acquired by ingesting infected vertebrate blood. To combat foodborne illness, insect midgut epithelial cells are armed with efficient microbial recognition and control systems, such as the immune deficiency (IMD) pathway that regulates the expression of antimicrobial peptides (AMPs). However, despite their medical and veterinary importance, relatively little is known about the IMD signaling pathway and production of AMPs in the digestive tract of cat fleas (Ctenocephalides felis).

View Article and Find Full Text PDF

Representative models of intestinal diseases are transforming our knowledge of the molecular mechanisms of disease, facilitating effective drug screening and avenues for personalised medicine. Despite the emergence of 3D in vitro intestinal organoid culture systems that replicate the genetic and functional characteristics of the epithelial tissue of origin, there are still challenges in reproducing the human physiological tissue environment in a format that enables functional readouts. Here, we describe the latest platforms engineered to investigate environmental tissue impacts, host-microbe interactions and enable drug discovery.

View Article and Find Full Text PDF

Development of an optimized protocol for protoplast-to-plant regeneration of selected varieties of Brassica oleracea L.

BMC Plant Biol

December 2024

Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.

Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.

View Article and Find Full Text PDF

The effects of wheat bran dietary fiber (WBDF) treated by air flow micro-pulverization on gelatinization, thermal, rheological, structural properties, and in vitro digestion of wheat starch (WS) were investigated. Different particle sizes of WBDF were obtained by conventional knife grinding and airflow micro-grinding. Compared with conventional knife grinding, the particle size of WBDF treated by air flow micro-pulverization decreased, the particle size distribution was concentrated at small particle sizes, the specific surface area increased, and the hydraulic and oil-holding power decreased, which was mainly related to the change of WBDF spatial structure and the increase of solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!