A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of low-molecular-weight polysaccharide-based wound dressings for full-thickness cutaneous wound healing via coacervate formation. | LitMetric

The development of polysaccharide-based wound dressings that are easy to prepare, adhere to tissue, adapt to diverse shapes and exhibit tunable mechanical properties holds significant clinical interest. This study introduced a simple spontaneous liquid-liquid phase separation technique employing low-molecular-weight and high polyion concentration of chitosan (CS) and hyaluronic acid (HA) to fabricate CS/HA coacervates. Upon increasing the molecular weight of chitosan from 7 kDa to 250 kDa, a transition in the CS/HA coacervates from liquid-like state to an elastic liquid and eventually to a solid-like state was observed. The resulting CS/HA coacervates demonstrated robust water resistance and adhesion to skin tissue. Notably, the molecular weight of chitosan significantly influenced the mechanical properties and hydration levels of the CS/HA coacervates. Moreover, in vivo studies using a full-thickness cutaneous defect model revealed that the CS/HA coacervates, prepared using 100 kDa chitosan, markedly accelerate wound healing. The coacervates' ease of preparation, wet adhesion, heterogeneous structure, suitability for irregularly shaped wounds, and exceptional wound healing promotion of the coacervates qualify them as an optimal wound dressing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122851DOI Listing

Publication Analysis

Top Keywords

cs/ha coacervates
20
wound healing
12
polysaccharide-based wound
8
wound dressings
8
full-thickness cutaneous
8
mechanical properties
8
molecular weight
8
weight chitosan
8
wound
6
coacervates
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!